
A Survey on Swarm Intelligence Approaches for Feature Selection

Bach Hoai Nguyen∗ , Bing Xue, Mengjie Zhang

School of Engineering and Computer Science
Victoria University of Wellington, PO Box 600, Wellington 6140

New Zealand

Abstract

One of the problems in Big Data is a large number of features or dimensions, which causes difficulties to apply machine
learning, especially classification algorithms. Feature selection is an important technique which selects small and infor-
mative feature subsets to improve the learning performance. However, feature selection is not an easy task due to its
large and complex search space. Recently, swarm intelligence techniques have gained much attention from the feature
selection community because of their simplicity and potential global search ability. There have been a few survey papers
about applying swarm intelligence to feature selection. However, none of them provided a detailed and systematic discus-
sion about how the search mechanisms (including both representation and updating mechanism) of swarm intelligence
have been modified to solve feature selection problems effectively. This paper presents a comprehensive survey of the
state-of-the-art work on swarm intelligence for feature selection. The main focus of this paper is on analyzing the search
mechanism of the proposed algorithms. The expectation is to provide an overview to researchers and encourage them
to investigate more effective search mechanisms for applying swarm intelligence to feature selection. At the end of the
paper, several issues are presented for future research.

Keywords: Feature Selection, Swarm Intelligence, Particle Swarm Optimization, Ant Colony Optimization, Artificial
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1. Introduction

In the last two decades, data has increased enormously
in many fields including business, scientific research. The
term “Big Data” has been widely used to describe a large
amount of data that cannot be handled by the typical
database software. Recently, Big Data is described by 5V
characteristics: volume, velocity, variety, value, veracity
[1]. Volume is probably the first and most common prop-
erty when people talk about Big Data. The large volume of
data can be caused by a large number of features (dimen-
sionality) which is a challenging problem when applying
machine learning, especially classification algorithms, to
Big Data analysis.

Traditional machine learning usually does not work well
on high-dimensional dataset due to the “curse of dimen-
sionality” [2]. Notably, the increment in dimensionality
enlarges the number of possible instances in the instance
space, which makes the available data become sparse [3].
In order to achieve reliable results in such high-dimensional
problems, classification algorithms require a large amount
of data which usually grows exponentially with respect to
the number of features. More importantly, not all features
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are useful. In contrast to relevant features which provide
useful information about the learning task, irrelevant fea-
tures provide misleading information leading to deterio-
ration in the classification performance [4]. For example,
in k-nearest neighbor (KNN), the irrelevant or noisy fea-
tures may increase the distances between instances from
the same class, which makes KNN more difficult to classify
instances correctly. In some other classification algorithms
such as decision trees (DT) or support vector machines
(SVMs), the learned model may have to overfit the irrele-
vant features to cope with the data; in which case it will
not work well on unseen/future instances. Redundant fea-
tures provide the same or similar information about the
learning task as other features. In respect of classifica-
tion algorithms which directly use training instances in
the classification process such as Naive Bayes or KNN,
redundant features add unnecessary weights which can re-
duce the classification performance. For classification al-
gorithms which explicitly build a classification model such
as DT or SVM, the redundant features can be removed
during the training process. However, the redundant fea-
tures cause extra complexity which increases the training
time.

To deal with high-dimensional datasets, feature selec-
tion [5] is proposed to reduce the number of features by
removing irrelevant and redundant features. Feature se-
lection has been used to improve many machine learning
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tasks including classification [5], clustering [6, 7], and re-
gression [8]. However, most studies apply feature selection
to classification problems, so the focus of this paper is
to review feature selection for classification. The benefits
of feature selection include improving the learning perfor-
mance, saving the cost of measuring unused features, and
making the learned classifier simpler and easier to under-
stand. However, feature selection is a challenging task due
to its large search space. Suppose the number of original
features is n, the total number of possible feature subsets is
2n which increases exponentially with respect to the num-
ber of features. Hence, feature selection is an NP-hard
problem [9] which makes an exhaustive search impracti-
cal. In order to achieve feature selection, it is necessary
to have an efficient global search technique. Evolutionary
computation (EC) is a family of population-based opti-
mization techniques which have a potential global search
ability. Swarm intelligence (SI) is a branch of EC which
consists of algorithms inspired by behaviors of social an-
imal/insect. Some well-known representatives of SI are
particle swarm optimization (PSO), ant colony optimiza-
tion (ACO), and artificial bee colony optimization (ABC).
SI has been widely applied to feature selection because
of its simplicity, effective search mechanism, and natural
representation [10]. This paper presents a comprehensive
survey with an expectation to provide a state-of-the-art
overview of SI based feature selection algorithms.

There are a small number of papers reviewing SI based
feature selection algorithms. Kothari et al. [11] discussed
17 papers applying PSO — one of the most popular SI
algorithms — to feature selection. However, all the re-
viewed papers were published before 2010. Bin Basir and
Binti Ahmad [12] presented a short review where there
were about 30 papers published before 2013. Xue et al.
[13] provided a comprehensive survey of EC based feature
selection. However, due to the scope of the paper [13], only
PSO and ACO based algorithms were reviewed in details.
Recently, Brezočnik et al. [14] presented a broad survey
about SI based feature selection algorithms. The paper
[14] reviewed papers according to different components of
the algorithms such as representation, initialization, up-
dating mechanism. However, representation and updating
mechanism are two interconnected components, so sepa-
rating them may not give a good overview of how an SI
algorithm works. This paper provides an overview of SI
based feature selection algorithms from a different perspec-
tive. We category reviewed papers based on how feature
selected is presented in the proposed algorithms. With re-
spect to the representation, we discuss how the proposed
algorithms perform feature selection.

The remainder of this paper is organized as follows. Sec-
tion II describes the background of feature selection. Sec-
tion III reviews SI based feature selection algorithms which
are mainly based on PSO, ABC, and ACO. Section IV dis-
cussed current issues and future directions. The paper is
concluded by Conclusions in Section VII.

Figure 1: An overall feature selection process [15].

2. Background

Feature selection is a process of selecting a small and
more informative feature subset from the original features.
For a classification task, feature selection aims to find the
smallest feature subset which is necessary and sufficient
to describe the class label [16]. In general, there are four
main steps in a feature selection algorithm, which can be
seen in Figure 1. Among the four steps, “Subset Genera-
tion” and “Subset Evaluation” are the two most important
steps. “Subset Generation” generates candidate feature
subsets using a search mechanism. The goodness of candi-
date subsets is measured by an evaluation function (fitness
function) in “Subset Evaluation”. Based on feedback from
“Subset Evaluation”, “Subset Generation” is expected to
generate more promising feature subsets.

According to the evaluation criteria, feature selection
approaches can be divided into three categories: wrapper
approaches, embedded approaches, and filter approaches
[17]. Wrapper approaches evaluate candidate subsets by
a classification algorithm. Embedded approaches also in-
volve a classification algorithm, but features are selected
during the training process of the algorithm. An example
is DT which selects features as its internal nodes during its
training process. The features that appeared in the final
tree are the selected features. In contrast, filter approaches
do not use any classification algorithm to evaluate candi-
date subsets. The evaluation is mainly based on intrinsic
characteristics of a dataset. Among the three approaches,
the filter one is usually the most efficient since it does
not involve any learning process. However, wrapper and
embedded approaches usually achieve better classification
performance since they consider the interaction between
the selected features and the wrapped classification algo-
rithm. Embedded approaches are usually less computa-
tionally intensive than wrapper approaches, but they are
only applicable to some specific classification algorithms.

Feature selection is a challenging problem due to its
large search space and complex interactions between fea-
tures [17]. On the one hand, the number of possible fea-
ture subsets increases exponentially with respect to the
number of original features. On the other hand, the fea-
ture interaction significantly affects the classification per-
formance. For example, two weakly relevant features may
significantly improve classification performance when they
are selected together. In contrast, selecting highly relevant
features may result in many redundant features. There-
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fore, it is essential to generate and evaluate feature subsets
as a whole, which are responsibilities of the search mecha-
nism and the evaluation criteria, respectively. In addition,
feature selection can be considered a multi-objective prob-
lem since its two main objectives, maximizing the classifi-
cation performance and minimizing the number of selected
features, are usually in conflict. As a family of population-
based optimization techniques, EC has been widely ap-
plied to feature selection because of its potential global
search ability and natural mechanism to evolve a set of
trade-off solutions for multi-objective problems. This pa-
per focuses on reviewing feature selection algorithms based
on SI which is a branch of EC. SI is gaining more attention
by the feature selection community recently [13].

2.1. Existing Work on Feature Selection

In this subsection, we briefly discuss the existing feature
selection algorithms based on two aspects: the evaluation
criteria and the search mechanism.

2.1.1. Evaluation criteria

In a wrapper feature selection algorithm, feature subsets
are evaluated by the classification performance. Most clas-
sification algorithms can be applied to feature selection, for
example KNN [18, 19], Naive Bayes (NB) [20, 21], SVMs
[22, 23, 24, 25], and artificial neural networks (ANNs)
[26, 27, 28].

Filter approaches apply measures from different disci-
plines to evaluate feature subsets. The four most com-
mon filter measures in feature selection are distance mea-
sures, correlation measures, consistency measures, and in-
formation measures. The distance measures aim to select
a feature subset that can separate instances from different
classes as much as possible. A well-known representative of
distance measures is Relief [29]. Consistency measures [30]
show how consistent the selected features can separate dif-
ferent classes in comparison with using all features. Two
instances are inconsistent if they have the same feature
values, but they belong to different classes. The goal is to
find a minimal feature subset that reaches an acceptable
inconsistency rate. Correlation measures [31] evaluate how
dependent two random variables are, so they can be used
to select a feature subset which is highly related to the
class label (maximizing relevance) and contains uncorre-
lated features (minimizing redundancy). Similar to corre-
lation measures, information measures [32] can be used to
measure the redundancy and relevance of a feature subset.
Among the four measures, information measures usually
gain more attention because they can detect non-linear
relationships between random variables.

In an embedded feature selection algorithm, the selec-
tion process happens during the training process of a clas-
sification algorithm. DT is an example of embedded fea-
ture selection algorithms, where the features appeared in
the final tree are the selected features. SVMs can also be
considered an embedded approach where its model weights

can reflect how important the corresponding features are.
Recently, an embedded feature selection approach based
on a sparse-learning mechanism is gaining more attention
because of its good performance [33, 34]. The idea is to in-
clude a sparse regularization term in the objective function
so that when the classification error is minimized, many
feature coefficients are forced to be very small, or exactly
zero. Feature selection is achieved by selecting features
with large enough coefficients [35, 36].

2.1.2. Search mechanisms

The most straightforward mechanism is to consider all
the possible feature subsets, which is known as an exhaus-
tive search [37, 38, 39]. The exhaustive search guaran-
tees to find an optimal feature subset but it is impractical
due to its extremely high computational cost, especially
when there are a large number of selected features. In
order to reduce the computation cost, two greedy search
mechanisms, sequential forward selection (SFS) [40] and
sequential backward selection (SBS) [41], were proposed.
While SFS started from an empty subset and sequentially
added features until the classification could not be im-
proved or a predefined number of selected features was
reached, SBS started from a full set of features and se-
quentially removed features. Although SFS and SBS sig-
nificantly reduced the computational time, they suffered
from the “nesting effect” where the added/removed fea-
tures could not be removed/added later. The problem was
addressed by Stearns et al. [42] who applied l times for-
ward steps followed by r times backward steps. However,
l and r were problem-specific, so Pudil et al.[43] proposed
two floating sequential searches, sequential forward float-
ing search (SFFS) and sequential backward floating search
(SBFS) which could dynamically determine the values (l,
r).

Although sequential searches have been widely applied
to feature selection [44, 45, 46, 47], they are usually stuck
at local optima due to their sequential behavior. In recent
years, EC techniques gain more attention from feature se-
lection community since they do not make any assump-
tions about the search space. More importantly, they are
population-based techniques, so they can produce multi-
ple solutions in a single run which is suitable for multi-
objective feature selection. In general, EC can be divided
into two main categories: evolutionary algorithms (EAs)
and swarm intelligence (SI). EAs refers to the evolution-
ary algorithms which follow Darwinian principles. In par-
ticular, these algorithms apply genetic operators such as
mutation, crossover, reproduction, and selection to evolve
a population of individuals. The individuals compete to
survive based on their fitness values. Among EAs, ge-
netic algorithms (GAs) [48] is probably the most common
technique applying to feature selection [13]. SI algorithms
are inspired by the behaviors of social insects/animals.
In these algorithms, a population consisting of a set of
individuals explore and share their knowledge about the
search space to other members. The sharing mechanism
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helps the whole swarm move toward better positions in the
search space, which eventually converges to an optimum
[49]. Some well-known representatives of SI algorithms are
PSO [50], ACO [51], and ABC [52]. In comparison with
GAs, SI algorithms usually converge faster and perform
relatively better when the computational budget is low
[53, 54], which might be a reason for a significant increase
in the number of papers using SI algorithms for feature
selection, especially PSO [13]. Therefore, the focus of this
paper is SI based feature selection algorithms.

2.2. Detailed Coverage of This Paper

Recently, many SI algorithms have been applied to fea-
ture selection, and the three most popular ones are dis-
cussed in this paper, which are PSO, ABC, and ACO.
For each algorithm, we realize that there are two main
ways to represent feature selection which are a standard
representation — the initial representation when the al-
gorithm was proposed, and a binary representation — a
representation tailored for feature selection. Besides, the
updating mechanism depends heavily on the representa-
tion. Therefore, we divide SI based feature selection al-
gorithms into two main categories corresponding to the
above two representations. For each representation type,
the algorithms are further classified as single objective al-
gorithms and multi-objective algorithms since the search
mechanisms are different when the algorithms have to deal
with different numbers of objectives.

The reviewed literature is organized as follows. The fea-
ture selection algorithms based on PSO, ABC, and ACO
are reviewed in Section 3. Each subsection in Section 3
discusses a particular SI technique for feature selection.
In each subsection, the algorithms are further divided ac-
cording to their representations for feature selection.

3. Swarm Intelligence for Feature Selection

3.1. PSO for Feature Selection

In PSO, each position of a candidate solution is repre-
sented by a vector which is a natural representation for
feature selection. Specifically, each element of the vector
corresponds to an original feature, and its value indicates
whether the corresponding feature is selected or not. PSO
has been applied to achieve feature selection in many real-
world applications such as text mining [55, 56, 57, 58],
data stream [59], image analysis [60, 61], medical prob-
lems [62, 63, 64]. A standard (continuous) PSO represen-
tation consists of real-value elements. If the element value
is greater than a threshold θ, the corresponding feature is
selected. Otherwise, the feature is discarded. A binary
PSO representation consists of binary-value elements. If
the element value is “1”, the corresponding feature is se-
lected. Otherwise, the feature is discarded. The following
subsections discuss PSO based feature selection algorithms
based on their representations.

3.1.1. Standard (continuous) representation

There have been many studies proposed to improve the
performance of PSO based feature selection algorithms.
The modifications have been made in the representation,
initialization and search mechanism. In terms of repre-
sentation, Lin et al. [65] proposed a representation so
that PSO could perform both feature selection and opti-
mizing SVMs kernel parameters simultaneously. The pro-
posed representation consisted of the standard representa-
tion and additional elements for SVM’s parameters. The
results showed that the proposed algorithm achieved bet-
ter classification performance than using all features and a
similar work based on GAs [66]. The same idea was applied
to perform feature selection for power distribution systems
[67]. Tran et al. [68] proposed a representation that could
achieve both feature selection and feature discretization.
In the proposed representation, each element in the po-
sition vector was used as a cutting point to discretize an
original feature. If the element value was out of a prede-
fined range, the corresponding feature was discarded. The
proposed representation assisted PSO to select a smaller
number of features and achieve better classification per-
formance than using the standard representation.

The length of a standard representation is equal to the
number of original features, which results in a large search
space and an expensive computation cost. Many works
have been proposed to shorten the representation length.
Nguyen et al. [69] firstly grouped similar (potentially re-
dundant) features into the same group or cluster. A max-
imum number of features selected from each cluster was
predefined. Each position element was a real-value num-
ber indicating a feature index from a cluster. Since the
maximum number for each cluster was smaller than the
number of features in the cluster, the proposed represen-
tation was shorter than the standard representation. How-
ever, in the proposed representation a small change of the
position might not lead to any different feature subset.
Therefore, Nguyen et al. [70] applied Gaussian distribu-
tion to propose a new transformation rule, which could
form a smoother fitness landscape than the representa-
tion in [69]. The most important question was how to
determine the maximum number of features selected from
each feature cluster. Tran et al. [71] proposed a vari-
able length representation for PSO. The main idea was to
divide the swarm into multiple divisions, and each divi-
sion had its maximum length. The original features were
firstly ranked by symmetric uncertainty measure [72]. If
the maximum length of a division was 100, only the top
100 features were considered to be selected. Therefore,
although the proposed representation could significantly
reduce the computation time, it still allowed the swarm to
explore different feature subset sizes ranging from 1 to the
total number of original features.

Shortening the particle dimension is an option to im-
prove the efficiency of PSO based feature selection algo-
rithms. However, the most time-consuming part is usu-
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ally the evaluation process, especially in wrapper PSO
based feature selection. In order to significantly reduce
the computational cost, it is necessary to investigate an
efficient evaluation. Wang and Liang [73] split a training
set into many subsets. Feature selection was performed
on each training subset, which resulted in several feature
subsets. The final subset was formed by combining the
obtained feature subsets. Since each training subset was
much smaller than the original training set, the evaluation
process was more efficient. However, it is possible that fea-
tures selected from different subsets might be redundant.
Nguyen et al. [74] also modified the training set to speed
up the evaluation process. Mainly, for the first 70% itera-
tions, candidate feature subsets were evaluated by a surro-
gate training set containing several instances selected from
the original training set. The original training set was used
only in the last 30% iterations. The surrogate training set
significantly reduced the computation time while achiev-
ing similar or better classification accuracy than using the
original training set. The work was further extended in
[75] where the surrogate training set was dynamically de-
termined during the evolutionary process. Butler-Yeoman
et al. [76] proposed a hybrid approach combining filter and
wrapper to reduce the evaluation cost. The idea was to
use mutual information to estimate promising candidates
which were then compared with pbest using a classifica-
tion algorithm. Since not all candidates were evaluated by
the classification performance, the proposed algorithm was
less computationally expensive than the standard wrapper
PSO algorithm.

Initialization is an essential step in PSO. A good starting
point usually leads the swarm to a better solution. In [77],
Xue et al. proposed three new initialization mechanism
inspired by the sequential feature selection approach. The
three mechanisms were different in terms of the number
of features using for initialization. The small initialization
allowed each particle to start with 10% of the total number
of features. In contrast, the large initialization allowed
each particle to start with 50% of the total number of
features. The mixed initialization combined both small
and large strategies where 2/3 of the swarm was initialized
by the small strategy and the remaining 1/3 of the swarm
was initialized by the large strategy. The results showed
that the small initialization selected the smallest number of
features while the large initialization selected the largest
number of features. The mixed initialization selected a
smaller number of features with similar or better accuracy
than the random initialization.

The key idea of PSO is to improve the candidate solu-
tions by experience learning from pbest and gbest which
usually makes PSO converge quickly. However, when ap-
plying to a problem with a large and complex search space
such as feature selection, PSO usually suffers the prema-
ture convergence problem in which the swarm is stuck
at a poor solution. Many studies have integrated local
searches in PSO based feature selection to improve its per-
formance. Tran et al. [78] proposed a local search method

that flipped a small number of selected elements in pbest.
If the obtained feature subset was better than the current
pbest, it replaced the pbest. The proposed algorithm could
select a smaller number of features with a better classifi-
cation performance than standard PSO. Later, Tran et al.
[79] proposed another local search mechanism to improve
pbest. The local search firstly removed features that were
more relevant to other features than the class label, i.e.
removing potentially redundant features. After that, the
local search added features that were more relevant to the
class label than the other features, i.e. adding potentially
relevant features. The classification performance was im-
proved over the one proposed in [78]. Nguyen et al. [80]
focused on improving gbest by a local search mimicked
the backward feature selection method. The idea was to
remove features from gbest according to the relevant and
redundant measure calculated by mutual information. Al-
though the proposed algorithm spent an additional com-
putation cost for the local search, it was still faster than
other PSO based feature selection algorithms since it se-
lected much smaller numbers of features while maintaining
or even improving the classification performance. Mistry
et al. [81] improved the swarm diversity by using the av-
erage of all discovered pbest instead of the best discovered
pbest as in standard PSO. Additional random values were
added to gbest before updating a particle so that the parti-
cle moved farther from the current position. The proposed
algorithm also embedded the idea of a micro-genetic algo-
rithm (mGA) to improve the swarm diversity by using a
small secondary swarm. The secondary swarm was iter-
atively formed by selecting particles that had either the
lowest or the highest correlation with gbest, so the pro-
posed algorithm could balance between local exploitation
and global exploration. The experimental results showed
that the proposed algorithm outperformed conventional
GAs and PSO based feature selection algorithms on facial
emotion recognition. Also inspired by GAs, Nguyen et al.
[82] proposed a local search mechanism based on crossover
and mutation operators from GAs. The crossover was per-
formed between a pair of particles, called parents. The
obtained children replaced their parents if they had better
fitness values. The mutation was applied to improve gbest
once gbest had not been improved for a finite number of it-
erations. The position element not only indicated whether
a feature was selected but also presented how much confi-
dent the selection decision was. The less confident element
was more likely to be mutated than the more confident
element. The results showed that the two operators as-
sisted PSO to achieve better fitness values than standard
PSO during an entire evolutionary process. Recently, Gu
et al. [83] applied Competitive Swarm Optimizer (CSO)
—a modified version of PSO— to achieve feature selec-
tion. CSO was proposed by Cheng et al. [84]. In CSO,
gbest and pbest were removed. The particles had to enter
a competition, and the winners went directly to the new
population. The losers had to learn from the winners, i.e.
their positions were updated with respect to the positions
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of the winners, and then they could enter the new pop-
ulation. The results showed that the CSO based feature
selection algorithm selected a smaller number of features
with a lower classification error rate than standard PSO.

Dynamic parameter control, which can balance between
exploration and exploitation, is also a good way to avoid
premature convergence. In standard PSO, decreasing the
inertia weight usually assists PSO to achieve better perfor-
mance since the search process smoothly changes its focus
from exploration to exploitation [85, 86]. The strategy
was also applied to feature selection [55, 60]. Adeli and
Broumandnia [87] proposed to control the inertia weight
based on swarm diversity. When the diversity was low, the
inertia weight was increased to encourage exploration, and
vice versa when the diversity was high. The proposed al-
gorithm evolved better feature subsets than Chaotic PSO
[88] and Random PSO [89] which also controlled the iner-
tia weight dynamically.

In multi-objective PSO (MOPSO), since there is not a
best solution, MOPSO usually maintains an archive set
containing all non-dominated solutions discovered so far.
When updating a particle, an archive member can be se-
lected as gbest. Xue et al. [90] proposed the first multi-
objective PSO (MOPSO) algorithm for feature selection.
The target was to minimize both the classification error
and the number of selected features using either continu-
ous or binary PSO. The experimental results showed that
the proposed algorithm, called CMDPSOFS, was superior
to NSGA-II [91] and SPEA2 [92] on feature selection prob-
lems. A filter MOPSO based feature selection was also
proposed by Xue et al. [93], in which the two objectives
were to minimize the number of features and to maximize
the relevance between the selected features and the class
labels. The relevance was calculated by using either mu-
tual information or information gain. The experimental
results suggested that MOPSO algorithms evolve feature
subsets with higher classification performance than single-
objective feature selection algorithms. Later, Nguyen et al.
[94] improved the archive members in MOPSO by applying
three local search operators, which are Inserting, Remov-
ing and Swapping. The inserting operator aimed to add at
most one feature that could improve the archive member.
The obtained solution was passed to the removing operator
that removed at most one feature so that the solution was
improved. Finally, the swapping operator improved the
generated solution by replacing a selected feature by an un-
selected feature. As a result, the three operators improved
the archive members quality by changing a few features in
their feature subsets. The proposed algorithm could select
a smaller number of features and achieved similar or better
classification performance than NSGA-II [91], SPEA2 [92],
and CMDPSOFS [90] on 12 UCI datasets. Maintaining
diversity is essential in any evolutionary multi-objective
algorithms, including MOPSO. Zhang et al. [95] increased
the swarm diversity in MOPSO by re-initializing veloc-
ities and partially mutating positions of some particles.
Amoozegar and Minaei-Bidgoli [96] improved the swarm

diversity by applying uniform and non-uniform operators
to two sub-swarms selected from the whole swarm. The
proposed algorithm also generated new candidate feature
subsets based on how frequent features were selected by
the archive members (non-dominated solutions). The gen-
erated solution could be added to the archive set if it was
not dominated by any archive members. The proposed al-
gorithm evolved more diverse approximated Pareto fronts
than CMDPSOFS [90].

3.1.2. Binary representation

PSO was originally proposed for continuous optimiza-
tion. A straight forward way to extend PSO for solving
binary optimization is to keep using the continuous up-
dating equation and convert the continuous position to a
binary position. A sigmoid function is widely used for this
task since it can convert any continuous value to a con-
tinuous value in the range [0,1]. A random value between
[0,1] is used to convert the obtained continuous value to
a binary value. The above approach has been applied to
achieve feature selection [97, 98, 99, 100, 101, 102]. How-
ever, due to the standard updating equations, the above
approach also suffers the premature convergence as in con-
tinuous PSO. Chuang et al. [103] proposed a gbest reset-
ting mechanism, which set all gbest position’s elements to
zero when the best fitness did not change for a finite num-
ber iterations. The experimental results showed that the
resetting mechanism helped PSO to evolve a smaller set
of features with higher classification accuracy than stan-
dard binary PSO [104] in most cases. The gbest resetting
approach was also applied in [105] where the new gbest
was determined based on all the pbest discovered so far.
Moradi and Gholampour [106] proposed a local search to
avoid the premature convergence. The original features
were divided into dissimilar and similar sets based on their
correlations with other features. The numbers of features
selected from the two sets were predefined. For each can-
didate subset, the local search was performed to add or
remove features so that the number of features selected
from each set matches the predefined number of features.
Chen et al. [107] added a new term called feature confi-
dence to the sigmoid function. The confidence of a feature
had two main components: the feature relevance measured
by Relief and the feature frequency measured by the num-
ber of times the feature was selected by gbest (during the
evolutionary process). Dong et al. [108] avoided the pre-
mature convergence by preventing all particles from com-
municating with each other. The swarm was divided into
k niches. The particles in the same niche could share their
knowledge. The niches communicated through their cen-
ters. The proposed topology was expected to slow down
the information exchanging.

Similar to the continuous representation, binary repre-
sentation was also modified to achieve both feature se-
lection and parameter optimization for SVMs [109, 110].
Statistical feature clustering was also utilized in the binary
representation which allowed to select one or multiple fea-
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tures from each cluster [111, 112]. The proposed represen-
tation significantly reduced the number of selected features
while maintaining or improving classification performance.

However, in a binary search space, there is no direction,
and particles move by flipping their bits. Therefore, using
velocity and momentum concepts from continuous PSO
is not appropriate. For example, Liu et al. [113] showed
that in binary PSO, increasing the inertia weight made the
swarm change its focus from exploration to exploitation,
which was opposite to continuous PSO. Besides, picking an
appropriate variant of the sigmoid function is an essential
but difficult task [114]. To avoid the above limitations,
Nguyen et al. [115] proposed a novel binary PSO algorithm
where the two concepts were redefined. In the proposed
algorithm, the velocity was defined as the probability of
flipping bits in the position. The momentum was defined
as the tendency to stick with the current position. The
proposed binary PSO algorithm could select better feature
subsets with a higher classification performance than the
standard binary PSO algorithm since it describes binary
movements more accurately.

3.1.3. Discussion about PSO based feature selection

In comparison with continuous PSO, there are much
fewer studies applying binary PSO to feature selection.
In fact, a binary representation is more suitable to feature
selection than a continuous representation. One feature
subset can be represented by exactly one binary vector.
Meanwhile, one feature subset can be represented by many
(possibly infinite) numbers of continuous vectors. There-
fore, using the continuous representation significantly en-
larges the search space. However, Xue et al. [93] showed
that continuous PSO selected better feature subsets than
standard binary PSO. The limited performance of binary
PSO is due to its inappropriate application of the velocity
and momentum concepts from continuous PSO. The work
in [115] showed that if the properties of a binary search
space are considered, the performance of binary PSO is
significantly improved. However, [115] is just a very initial
work. More investigation and analysis such as parameter
control, search behavior are needed to improve the perfor-
mance of binary PSO for feature selection further.

PSO has a natural representation for feature selection
where each position bit corresponds to an original feature.
However, this representation does not scale well when it
is applied to select from thousands or even millions of fea-
tures. In addition, the standard representation can show
which features are selected, but it can not show the in-
teractions between features, i.e. which features are work-
ing well with the others. More efficient and meaning full
representation is still an open issue in PSO based feature
selection.

3.2. ABC for Feature Selection

In 2005, Kraboga [116] proposed a bee swarm algorithm
called artificial bee colony (ABC) initially for numerical

optimization. ABC represents each candidate solution as a
food source. In a bee swarm, there are three kinds of bees
including employed bees, onlooker bees, and scout bees.
Each food source has its own employed bee which tries
to improve the food source’s quality by searching around
the neighboring food sources. Onlooker bees work similar
to employed bees, except they are more likely to search
around high-quality food sources. If a food source is not
improved for a number of iterations, the corresponding
employed bee becomes a scout bee which selects a new
food source randomly.

ABC utilizes a vector-based representation to solve the
optimization task, which is a natural representation for
feature selection. Similar to PSO, ABC can represent fea-
ture selection by either standard (continuous) or binary
representations. In the next subsections, ABC based fea-
ture selection algorithms will be reviewed according to
their representations.

3.2.1. Standard (continuous) representation

Since ABC was originally proposed for continuous opti-
mization problems, its standard representation is a vector
of real numbers which can be called a continuous represen-
tation. The continuous vector can represent a feature se-
lection problem where each element corresponds to an orig-
inal feature. A threshold θ is used to determine whether
a feature is selected or not. Particularly, if the element
is greater than θ, the corresponding feature is selected.
Otherwise, the feature is not selected. This representation
scheme was used in one of the early ABC based feature
selection algorithms to select features for a keystroke prob-
lem [117]. The aim was to select features that could help
to identify a user based on his key stroke’s properties. The
proposed algorithm was a wrapper approach which utilized
ANNs to evaluate the candidate feature subsets. By per-
forming feature selection, the classification accuracy could
be up to 95%. Continuous ABC was also used to select
relevant features for medical tasks in [118, 119, 19] where
SVMs was the wrapped classification algorithm. However,
the above methods do not consider the number of selected
features which is one of the main objectives of feature se-
lection. In 2016, Wang et al. [24] included the feature
ratio (the number of selected features divided by the total
number of features) in the fitness function. The authors
also proposed an initialization mechanism based on integer
tent maps that ensured each bit of a position vector has a
unique value in the range [0,1]. The experimental results
showed that the number of features was significantly re-
duced and the proposed initialization mechanism achieved
better classification performance than the random initial-
ization mechanism.

There are several works attempted to modify the stan-
dard representation in ABC based feature selection. Kuo
et al. [120] slightly modified the representation by includ-
ing SVMs’ parameters in each candidate solution. The
representation allowed ABC not only to select the rele-
vant features but also to optimize the SVMs’ parameters.
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Same idea was proposed by Alshamlan et al. [121], ex-
cept the number of selected was predefined. Rakshit et al.
[122] proposed a modified representation for a filter feature
selection approach. The fitness function was based on clus-
tering distances where the aim was to reduce the distance
between instances from the same cluster (cohesion) and in-
crease the distance between instances from different clus-
ters (separation). The modified representation had two
parts. The first part had a predefined number of integer
values which were the indices of the selected features. The
second part was the positions of C cluster centers where
C was the number of classes. The proposed algorithm
achieved better performance than using all features, but
it required to define the number of selected features which
was not an easy task. In addition, the above modifications
increased the representation’s length, so the search space
was also significantly enlarged.

ABC was also combined with other algorithms to im-
prove selection performance. Alshamlan et al. [123] pro-
posed one of the early works applying ABC to gene expres-
sion problems. Due to a huge number of genes, mRMR
[124] was utilized to reduce the number of features by re-
moving some irrelevant and redundant features. Among
the remaining features, ABC selected the informative fea-
ture subsets which are evaluated by SVMs. The experi-
mental results showed that using mRMR as a preprocess-
ing step could significantly improve the classification per-
formance. Shunmugapriya and Kanmani [125] combined
ACO and ABC to avoid the stagnation problem in ACO
and the delayed convergence in ABC. Firstly, ACO gen-
erated candidate solutions based on its pheromone val-
ues. The generated solutions were then treated as food
sources which were further improved by three kinds of
bees in ABC. Finally, the ACO’s pheromone was updated
by the best food source generated by ABC. The process
was repeated until a predefined number of iterations is
reached. The proposed hybrid algorithm achieved better
performance than both standard ABC and ACO.

The standard continuous representation has also been
widely used in multi-objective ABC based feature selec-
tion algorithms. Ghanem and Jantan [126] proposed a
wrapper multi-objective ABC based algorithm which con-
sidered the number of selected features and the classi-
fication performance measured by ANN. The proposed
algorithm maintained an archive set containing all the
non-dominated solutions discovered so far. The employed
bees generated neighboring solutions by selecting a non-
dominated archive member randomly. Hancer et al. [127]
proposed a filter multi-objective ABC-based algorithm
(MOABC) where the two objectives were to reduce the
redundancy and increase the relevance. Both objectives
were measured by mutual information. The proposed al-
gorithm was inspired by NSGA-II where the candidate
solutions were ranked according to their non-dominated
ranks and crowding distances. Instead of using the stan-
dard operators, the proposed ABC algorithm utilized GA’s
crossover and mutation operators to generate new candi-

date solutions. Experiment results showed that MOABC
achieved better classification performance than single ob-
jective ABC.

3.2.2. Binary representation

In the binary representation, each feature is represented
by a binary value where “1” means the corresponding fea-
ture is selected and “0” means the corresponding feature is
not selected. Since binary representation is not a standard
representation of ABC, it is necessary to develop a corre-
sponding updating mechanism. The most straight forward
way is to keep using the standard continuous updating
mechanism. The binary representation can be obtained
by applying a sigmoid function to convert from a continu-
ous vector to a binary vector, which is similar to standard
binary PSO. The idea was showed to be effective in feature
selection [128, 129, 130]. Yavuz and Aydin [131] used an
angle modulated to convert from binary optimization to
continuous optimization. Particularly, there are four pa-
rameters used in a sine function to generate continuous
values. Each generated value corresponded to an original
feature. If the value is greater than 0, the corresponding
feature is selected. Otherwise, the corresponding feature is
discarded. Although the proposed algorithm significantly
reduced the dimensionality of the search space — from the
number of original features to four continuous variables —,
it also introduced an unnecessary relationship between the
binary values since they were generated from the same dis-
tribution. In the above-proposed algorithms, although the
candidate solutions were binary vectors, the search pro-
cedure was essentially performed on a continuous search
space.

Later, Schiezaro and Pedrini [132] replaced the stan-
dard continuous updating mechanism in ABC by the GA
mutation operator which was more natural for a binary
representation. The proposed algorithm achieved signifi-
cantly better performance than PSO, GAs, and ACO on
10 UCI datasets. However, the proposed algorithm was
not compared with standard binary ABC that used a sig-
moid function. GA crossover and mutation were also ap-
plied to multi-objective ABC [133]. The experimental re-
sults showed that binary multi-objective ABC generated
a better Pareto front than the continuous one. Hancer
et al. [134] substantially modified the updating mech-
anism using the Jaccard similarity coefficient. Firstly,
for each candidate solution, instead of selecting only one
other solution, two other solutions were selected. A bi-
nary mutant vector was built by an integer model pro-
gramming so that the Jaccard dissimilarity between the
current solution and the mutant vector was similar to the
Jaccard dissimilarity between the two selected solutions.
The new candidate solution was obtained by performing
a crossover between the current solution and the mutant
vector. The proposed algorithm selected better feature
subsets than other binary optimization algorithms includ-
ing GA, binary PSO, binary ABC, and ACO. Ozger et al.
[135] performed a comparative study on different binary
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ABC algorithms on feature selection. The compared al-
gorithms included BitABC [136] using bitwise operators
such as AND, OR, XOR to generate new candidate so-
lutions, and binary ABC algorithms using different func-
tions to convert continuous vector to binary vectors, for
example, rounding function [137], sigmoid function [138],
tangent function [139]. The experimental results showed
that BitABC generated better feature subsets in a shorter
computational time. Thus, designing an updating mecha-
nism suitable to the binary representation usually results
in better performance. Bitwise operators were also used
in both single-objective ABC based feature selection [140]
and multi-objective ABC based feature selection [141].

3.2.3. Discussion about ABC based feature selection algo-
rithms

In comparison with PSO, there are fewer studies ap-
plying ABC to achieve feature selection. It is probably
because ABC was proposed later than PSO. An advan-
tage of ABC over other swarm intelligence algorithms is
the clear separation between exploration and exploitation.
Particularly, the employed bees and the onlooker bees look
at neighboring solutions — perform exploitation, while the
scout bees look at a new random solution — perform explo-
ration. However, many studies combine ABC with other
optimization algorithms such as DE [140], ACO [125], PSO
[126] to balance between exploration and exploitation. Al-
though the proposed hybrid algorithms achieve promising
results, they also have more parameters than a single algo-
rithm, i.e. parameters from both algorithms and parame-
ters to control the algorithm combination. Given the clear
separation between exploration and exploitation of ABC,
it would be better to investigate a better mechanism to
control exploration and exploitation for ABC rather than
mixing it with other algorithms.

There are also a small number of multi-objective ABC
feature selection algorithms. A possible reason is the on-
looker bees select a food source based on the food source
quality which is a single value. However, in multi-objective
feature selection, each food source has at least two objec-
tive values, so it is difficult for the onlooker bees to select
which food source to be improved. A further investigation
of multi-objective ABC feature selection is still an open
issue.

3.3. ACO for Feature Selection

ACO is one of the most well-known and widely used
swarm intelligence algorithm proposed by Dorigo and Di
Cario in 1999 [142]. Originally, ACO was designed to solve
discrete optimization problems which have many states de-
noted by nodes. Each ant could move along edges con-
necting adjacent nodes to build a full solution to the opti-
mization problem gradually. A fitness function then eval-
uated the solution. The goodness of the solution was
utilized to update information (called “pheromone”) on
each edge that the solution used. Specifically, a good so-
lution increases the amount of pheromone on its paths.

Figure 2: Standard fully-connected graph representation: each node
is a feature, an ant traverses a node to select the corresponding
feature. In this example, {F1, F2, F4} is the selected feature subset.

The following ants were attracted more by paths with
higher amounts of pheromone, and they were expected to
build more promising solutions. ACO has been applied to
many real-world problems [143], for example routing [144],
scheduling [145], DNA sequencing [146].

Since feature selection is a discrete (combinatorial) op-
timization problem, it has been widely achieved by ACO.
In the following subsections, we firstly describe the overall
view of an ACO based feature selection algorithm. The
first and most important question is how to represent fea-
ture selection in an ACO algorithm. Based on our liter-
ature reviews, there are two main approaches which we
called standard graph representation and binary graph
representation. In the standard graph representation, each
original feature is represented by a node in a graph. There
are also edges connecting between nodes that an ant can
follow to build its path. The nodes or features appearing in
the path are features selected by the ant. This representa-
tion is also a standard way for ACO to represent other dis-
crete problems. The second representation, binary graph
representation, is more specific to feature selection. Fea-
ture selection can be formulated as a set of binary decisions
where each decision determines whether a feature is se-
lected or not. Therefore, the binary graph representation
uses two sub-nodes: sub-node 0 and sub-node 1 to repre-
sent each feature. An ant visits all the nodes (features),
and at each node, the ant visits one of the two sub-nodes.
If the ant visits the sub-node 1, the corresponding fea-
ture is selected. Otherwise, the corresponding feature is
discarded. The two following subsections reviews and dis-
cuss ACO based feature selection algorithms that use the
standard and binary graph representations, respectively.

3.3.1. Standard graph representation

Firstly, we would like to describe an overall view of a
standard ACO based feature selection algorithm. As dis-
cussed above, in standard representation, each feature is
a node in a graph. An edge connecting between two fea-
tures shows that one of the two features may be the next
selected feature if the other feature is selected, which can
be seen in Figure 2. In each iteration, a number of ants
(defined by population size) simultaneously build their fea-
ture subsets. The process that each ant builds its feature
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subset is described as bellows:

• Step 1: an ant starts with a random node — a random
feature.

• Step 2: suppose that currently the ant select is at node
(feature) i, the ant will select the next node (feature)
to visit according to the following probability:

pij =


[τij ]

α[ηij ]
β∑

k∈Ji [τik]α[ηik]β
for j ∈ Ji

0

(1)

where Ji is the set of neighbor nodes that have not
been visited by the ant, τij and ηij are the pheromone
and heuristic information of the edge connecting node
i and node j.

• Step 3: the process of selecting the next node is re-
peated until a traversal stopping criteria is satisfied.

The generated candidate feature subsets are then evalu-
ated by a fitness function, and only the best ant is used to
update the level of pheromone on each edge. The process
of generating feature subsets and evaluating the generated
features is repeated until a stopping criterion is reached.
The best feature subset is then output as the final feature
subset.

There are several essential questions raised when design-
ing a standard ACO based algorithms:

• What is the traversal stopping criteria, i.e., when an
ant should stop building its feature subset?

• For a node i, how to define the neighboring nodes
(Ji)? The simplest way is to allow each node to con-
nect to all other nodes, i.e., the graph is fully con-
nected.

• How to define the heuristic information η? Talln-
Ballesteros and Riquelme [147] showed that using in-
formation gain to calculate a heuristic value could im-
prove the performance over a pure ACO based algo-
rithm that did not have any heuristic value. There-
fore, it is essential to define the heuristic information
η thoroughly.

Different algorithms have different answers to the above
questions. In one of the early works, a wrapper ACO
based feature selection was proposed for a network intru-
sion detection task [148]. The standard graph representa-
tion was used in the proposed algorithm, where each ant
stopped building its feature subsets once it already selected
a predefined number of features. The heuristic informa-
tion between a pair of nodes (features) was measured by
Fish Discrimination rate which showed how relevant (re-
dundancy) the two features were. The candidate feature
subsets were evaluated by the squared error obtained by
training an SVMs classification algorithm on the subset.
Only the best feature subset with the smallest error was

allowed to update the pheromone level at each node. The
main idea was to increase the pheromone level of all the
edges appearing in the best feature subset. Meanwhile,
the pheromone level of the unselected edges was evapo-
rated over time. Kanan et al. [149] proposed a similar
ACO based feature selection. The number of selected fea-
tures and the classification accuracy calculated by KNN
were used to define the heuristic value. However, it was
not clear what was the traversal stopping criteria and how
the heuristic values were updated.

Similar to PSO, ACO also suffers the premature con-
vergence problem where all ants had the same or similar
paths. To avoid such problem, many works attempt to
modify the updating rules of pheromone and heuristic val-
ues which play essential roles in ACO’s search mechanism.
In [28], a dynamic traversal stopping criteria was proposed
where the predefined number of selected features was in-
creased at a constant rate. Two updating rules — local
updating rules and global updating rule — were also pro-
posed. While the global one only allowed the best candi-
date subset to update the pheromone, the local one focused
on getting rid of irrelevant features and gave more chance
to features that never been selected to be considered. The
local rule was designed to prevent premature convergence.
The two rules were also used in [150] to perform feature se-
lection for surface electromyography signals classification.
In the proposed algorithm, the heuristic value is calculated
by mRMR [124]. The same updating strategy was also
used in [151] to select features for intrusion detection. The
selected features assisted SVMs to achieve better classifica-
tion performance than using all features. Joseph [152] also
utilized the two rules to perform feature selection for text
data. Peng et al. [153] proposed two stages of updating
pheromone. At the first stage, all the paths traversed in
the current iterations were used to update the pheromone
level of their edges. The updating pheromone amount de-
pended on the classification accuracy and the number of
selected features of the corresponding path. The second
stage added more pheromone to edges that appearing in
the best path of the current iteration. The two-stages up-
dating rule provided more randomness to the process of
building feature subsets. Therefore, the algorithm could
avoid local optimal and achieved higher performance than
two recently proposed ACO based feature selection algo-
rithms [154], [155].

A different direction to avoid premature convergence is
to control the trade-off between exploration and exploita-
tion better. Kabir et al. [156] proposed an ACO algo-
rithm that kept track of two best solutions: the best solu-
tion discovered so far — called global best, and the best
solution discovered in the current iteration — called lo-
cal best. The two best solutions contributed to updat-
ing the pheromone level so that the exploitation and the
exploration were balanced. Besides, a dynamic traversal
stopping criteria was defined as a predefined number of
features that were randomly selected by a roulette wheel
selection. The aim was to let the smaller subset size had
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a higher chance to be selected. The same idea was also
applied in [157] to perform feature selection for a speech
processing task. Forasti et al. [158] also proposed a new
selection rule that aimed to balance between exploration
and exploitation. The selection probability of an edge de-
pends on its pheromone and its selected frequency. In
other words, the selected frequency is the heuristic value
of an edge. Two pheromone updating rules called local
and final rules were also proposed. While the local one
increased the pheromone value of the rarely visited edges
— increased exploration ability, the final one increased
the pheromone value of the popularly visited edge — in-
creased exploitation ability. Two local searches based on
the opposite mechanism and sequential adding/removing
features were integrated into the proposed algorithm. The
results showed that the proposed algorithm could achieve
better performance than benchmark ACO and PSO based
algorithms. However, the superiority was subjected to the
number of selected features that needed to be predefined
for each dataset. Besides, due to the complexity, a large
number of parameters needed to be tuned.

While most standard ACO based feature selection algo-
rithms used the number of selected features as the traversal
stopping criteria, Rashno et al. [159] proposed a traversal
stopping criteria that consists of both the number of se-
lected features and the classification accuracy. Although
the proposed algorithm achieved good performance, users
needed to set the weights to combine the above two terms.
Besides, including the classification performance could sig-
nificantly enlarge the computation cost. This algorithm
was applied to image analysis.

A hybrid algorithm combining of DE and ACO was pro-
posed in [160]. In the proposed algorithm, at each itera-
tion, instead of starting with a single node, the ants started
from a small number of nodes that were selected by the
top feature subset candidates from the previous iteration.
Once all ants finished building their feature subset candi-
dates, the top candidates evaluated by the Linear Discrim-
inant Analysis were passed to DE to be further improved.
The idea of initializing each ant with a core set of good
features was also used in [161]. The heuristic values cal-
culated by mutual information were updated with respect
to the core feature set. Hamamoto [162] proposed another
hybrid algorithm that combined ACO and GAs to achieve
feature selection. Menghour and Souici-Meslati [163] in-
vestigated three mechanisms to combine ACO and PSO.
The first mechanism ran ACO and PSO together, and the
best solution evolved by both solution was used to evolve
the next population. The second mechanism ran ACO
first, then the best solutions evolved by ACO were used to
initialize PSO. In the third mechanism, ACO used the idea
of PSO to maintain gbest and pbest which were then uti-
lized to update the pheromone levels. The results showed
that the first mechanism achieved the best classification
performance.

Most of ACO based feature selection algorithms used a
fully connected graph which was too complicated. There

have been some attempts to reduce complexity. In [164],
the pheromone level and the heuristic value were assigned
to each node instead of each edge. The proposed strategy
significantly reduced the number of pheromone and heuris-
tic values since the number of nodes was usually smaller
than the number of edges, especially when there were a
large number of nodes. However, one disadvantage of this
scheme was the missing feature interactions. Particularly,
a pheromone level of an edge represented how good when
the two connected features were selected together, while a
pheromone level of a node represented how good the cor-
responding individual feature. Chen et al. [165] reduced
the graph complexity by forcing an order between features,
i.e. one feature could connect to only one other feature.
Hence, the number of edges was even smaller than the
number of nodes. Although the proposed mechanism sig-
nificantly reduced the number of pheromone and heuristic
values, it also reduced the chance of detecting feature in-
teractions. In addition, the order of features significantly
affected the algorithm’s performance. Zhao et al. [166],
on the other hand, reduced the complexity by restricting
the possible selection at each node. The main idea was
to group similar features in the same group. The traver-
sal process had to ensure that each group contributed at
least one feature and no more than four features. The
constraint could effectively reduce the scale of the search
space and avoid selecting too many redundant features.
Note that, a feature was added only if it could improve
the classification performance of the current feature sub-
set. Rashno [167] also divided the original feature set into
13 feature clusters, but only one feature was selected from
each cluster. The proposed algorithm significantly reduced
the data dimensionality while preserving the classification
performance.

In ACO based feature selection algorithms, the
pheromone values were usually updated by the classifi-
cation performance, and the heuristic values were cal-
culated by a filter measure such as mutual information
[164], Fisher score [165]. Hence, ACO based feature se-
lection algorithms could be considered hybrid algorithms
that combine both wrapper and filter. However, several
works did not use any classification algorithm to update
the pheromone values. Naseer et al. [168] proposed a
pure filter ACO based feature selection approach where
the goodness of the feature subsets and the heuristic values
are calculated based on a gain ratio. The algorithm also
maintained the ten best feature subsets which were then
evaluated based on an ensemble classifier. The feature
subset with the highest accuracy was the final subset of
the algorithm. Tabakhi et al. [169] used a similarity mea-
sure as the heuristic value. The pheromone was assigned
to each node, and it was updated by the number of times
the corresponding feature appeared in a path. The results
show that the proposed algorithm always achieved better
performance than some univariate filter feature selection
algorithms since it considered the redundancy between fea-
tures. However, the proposed approach was not compared
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Figure 3: Binary fully-connected graph representation: each node is
represented by two sub-nodes including sub-node 0 and sub-node 1.

with other EC based feature selection algorithms. Another
filter ACO based approach was proposed by Dadaneh et
al. [170] where the Pearson correlation was used to calcu-
late the heuristic value. The overall goal was to minimize
the redundancy between selected features. The selected
features had comparative performance in comparison with
other filter approaches on a wide range of classification al-
gorithms. Mehmood et al. [171] utilized information gain
to measure the relevance of the candidate subsets gener-
ated by ACO. The number of selected features was also
used in the fitness function to avoid selecting redundant
features. Experimental results on UCI datasets showed
that the selected features were generalized to both KNN
and C4.5 classification algorithms. Many other filter mea-
sures have also been widely used in ACO based feature
selections, for example, Fisher score [172], fuzzy set [173].

3.4. Binary graph representation

The standard graph representation represents each fea-
ture as a node, so there is only one edge connecting be-
tween two features. In contrast, the binary graph rep-
resentation represents each feature as two sub-nodes: 0
and 1, so four edges are connecting between two features,
as shown in Figure 3. Therefore, in comparison with the
standard graph representation, the binary graph represen-
tation needs four times (computational and memory) cost
to maintain the edge information, i.e. the pheromone and
heuristic values. However, the advantage of the binary rep-
resentation is that it does not need to specify the traversal
stopping criteria as in the standard one. An ant simply
traverses all the nodes. At each node, the ant can visit
either the sub-node 1 or the sub-node 0, which indicates
the corresponding feature is either selected or discarded.

One of the early works applied the binary representa-
tion to feature selection was proposed by Yan and Yuan
[174]. The aim was to improve the recognition rate in
a face recognition task. Firstly, eigen-features were ex-
tracted from facial images using PCA. The eigen-features
were then ranked according to their eigen-values so that
there was a sequence of features that ants could follow for
building their feature subsets. The heuristic value was the
number of selected features so far, which was dynamically

determined during the traversal process. The idea was to
consider the trade-off between increasing the pheromone
intensity of the path and the number of selected features.
The pheromone updating process was similar to the stan-
dard graph representation, except the number of edges to
updated was four times larger. The proposed algorithm
could select features that can significantly improve clas-
sification performance than using all features. However,
the proposed algorithm was not compared with a standard
ACO based feature selection algorithm. Yu et al. [175] ap-
plied the same idea to select tumor-related marker genes.
The feature subsets were also evaluated by SVM. However,
there were no heuristic values used in the proposed algo-
rithm. The combination of ACO and SVMs was also used
by Kadri et al. [176], where ACO was designed to perform
not only feature selection but also parameter selection for
SVM. The proposed algorithm achieved a lower classifica-
tion error rate than two feature selection algorithms based
on standard ACO and GAs. The binary representation
with ordered features was also used in [165, 177].

One limitation of the above works was the order of fea-
tures was pre-defined, which essentially limited the search
space since a feature could be connected to only one other
feature. Kashef and Nezamabadi-pour [178], on the other
hand, used a fully-connected topology that allowed a fea-
ture to connect to all other features. Experimental results
on three UCI datasets showed that the fully-connected
topology yielded better feature subsets with higher clas-
sification performance.

3.5. Discussion about ACO based feature selection algo-
rithms

In summary, ACO usually represents feature selection
as a graph problem which is flexible but does not scale
well. Let take the standard graph as an example. Suppose
there are n original features, the total number of edges
in a fully connected graph is E = n × (n − 1)/2, which
means the algorithm needs to maintain E pheromone val-
ues and E heuristic values. Besides, the standard graph
representation requires a traversal stopping criteria to be
predefined, which limits the search space. In contrast, the
binary graph representation does not need the traversal
stopping criteria, but it significantly enlarges the search
space since there are four edges connecting every pair of
features. Although many attempts have been made to im-
prove ACO’s scalability, they also restrict the interaction
between features. Hence, ACO has been applied mainly to
problems with small numbers of features (less than 100).

In ACO, the traversal process of building feature sub-
sets is determined by two factors: the pheromone level and
the heuristic values. In most ACO based feature selection
algorithms, the classification performance is used to up-
date the pheromone level, and a filter measure such as
information gain, F-score is used to calculate the heuristic
value. Hence, the ACO based algorithms can be consid-
ered hybrid approaches that have promising performance.
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However, there have been very few works analyzing the in-
teraction between the two essential factors. Furthermore,
in all ACO based works, the pheromone and heuristic val-
ues are defined between two features, so they measure two-
way interactions only. Meanwhile, three-way or higher in-
teractions are also common in real-world feature selection
problems. Therefore, the performance of ACO can be fur-
ther improved by considering such interactions. There are
also very few studies on ACO based multi-objective feature
selection which is still an open issue.

4. Issues and Challenges

Although SI algorithms, especially PSO, ABC, and
ACO, have been successfully applied to feature selection,
we still believe there is more work can be done to further
improve the performance of SI based feature selection al-
gorithms. The following subsection presents several chal-
lenges that need to be discussed.

4.1. Representation

More papers are using standard representations than
binary representations which are designed specifically for
feature selection. The possible reason is that the standard
representation, for example, continuous PSO, has been
studied for a long time. However, such standard represen-
tation is not the most natural representation for feature
selection. Meanwhile, the binary representation, the most
natural representation, is not well studied yet. Recent
works on binary PSO [115], ABC [140] show that if the
characteristics of binary search spaces are considered in
the representation and updating mechanism, the obtained
performance is even better than the standard representa-
tion. However, these are still very initial work, and more
investigation is needed.

The second limitation is that the current representation
usually shows which features are selected. However, in
many real-world applications, it is also essential to know
the interaction between features, i.e. which feature combi-
nations are good. Therefore, a good representation should
be able to reveal such information to users.

The third limitation is the scalability of the represen-
tation. For PSO and ABC, the vector-based represen-
tation results in the search space size is 2n where n is
the number of features. The search space of ACO is even
larger since the task is to select a subset of edges from
n × (n − 1)/2 edges. However, the number of features
in many real-world applications can reach thousands or
even millions of features. SI usually do not work well on
such high-dimensional problems [179]. A simple way is
to rank features and select top-ranked features. The se-
lected features were further refined by SI based feature se-
lection algorithms. However, selecting top-ranked features
may miss many feature interactions. A good representa-
tion with corresponding updating mechanisms, which can
reduce the search space size of such large-scale feature se-
lection, is still an open issue.

4.2. Multi-objective Feature Selection

Most of the existing SI based feature selection algo-
rithms are dominance-based algorithms which assumes
that the two objectives are equally important and in con-
flict. However, the assumptions is not true in feature se-
lection. Firstly, the two objectives of feature selection are
not always conflicting with each other. For example, re-
moving irrelevant features can improve the classification
performance. Secondly, the two objectives are not equally
important since in most feature selection problems, achiev-
ing higher classification performance is usually more im-
portant than reducing the number of features. In addition,
feature selection is a binary problem, so its Pareto front
is also discrete. It has been shown that dominance-based
algorithms do not generate an evenly distributed approxi-
mated front for a discrete Pareto front [180, 181]. This re-
quires the development of multi-objective SI based feature
selection algorithms that take the above feature selection
characteristics into account.

4.3. Embedded SI based Feature Selection

Most, if not all, SI based feature selection algorithms
belong to either wrapper or filter categories. Among the
three feature selection categories, embedded approaches
seem to have the best trade-off between effectiveness and
efficiency. Recently, sparse-learning based feature selection
methods —an embedded feature selection approach— have
received much attention. The main task of sparse-learning
based methods is to learn a set of feature coefficients that
can form a classification model and indicate whether the
corresponding features are selected or not. However, most
sparse-learning based methods are gradient-based, which
are easy to be trapped at local optima. SI algorithms,
such as PSO and ABC, are well-known for their global
search ability, and they have been widely applied to opti-
mize coefficients [182]. Therefore, it is promising to apply
SI algorithms to achieve sparse-learning feature selection,
which can be considered embedded SI based feature selec-
tion.

5. Conclusions

This paper provided a comprehensive survey of SI based
feature selection algorithms, which covers the three most
common SI algorithms: PSO, ABC, and ACO. The main
focus of this paper is the representation and the corre-
sponding updating mechanism. Current issues and chal-
lenges were also discussed.

The survey shows that there have been many studies at-
tempting to not only apply SI to feature selection but also
improve the selection performance. A common approach is
to optimize both parameters of the wrapped classifiers and
the feature subset. The performance can also be improved
by modifying the updating mechanism which is different
for different algorithms due to their characteristics. In
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PSO, the swarm is led by gbest and pbest, so most mod-
ifications are to enhance the two best positions with an
expectation of improving the swarm’s quality. ACO gen-
erates feature subsets based on the pheromone and heuris-
tic values, so most ACO studies focus on updating rules
of the two values to balance between exploration and ex-
ploitation. ABC is less mature than PSO and ACO, and
most studies aim to improve the performance of ABC by
combining it with other algorithms. The survey also shows
that the standard representations of SI algorithms are suit-
able to feature selection, but they are not as natural as the
binary representation. Although there have been several
studies on the binary representation, it is still necessary to
have more investigation, especially on the updating mech-
anism and parameter control, so the performance of SI
feature selection algorithms can be further improved.
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