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Abstract Feature selection is an important but often

expensive process, especially with a large number of

instances. This problem can be addressed by using a

small training set, i.e. a surrogate set. In this work, we

propose to use a hierarchical clustering method to build

various surrogate sets, which allows to analyze the effect

of surrogate sets with different qualities and quantities

on the feature subsets. Further, a dynamic surrogate

model is proposed to automatically adjust surrogate

sets for different datasets. Based on this idea, a feature

selection system is developed using particle swarm op-

timization as the search mechanism. The experiments

show that the hierarchical clustering method can build

better surrogate sets to reduce the computational time,

improve the feature selection performance, and allevi-

ate overfitting. The dynamic method can automatically
choose suitable surrogate sets to further improve the

classification accuracy.

Keywords Surrogate Model · Feature Selection · Par-

ticle Swarm Optimization · Clustering · Classification

1 Introduction

Real-world machine learning problems are described by

a large number of features but many of them negatively

Hoai Bach Nguyen
E-mail: Hoai.Bach.Nguyen@ecs.vuw.ac.nz

Bing Xue
E-mail: Bing.Xue@ecs.vuw.ac.nz

Peter Andreae
E-mail: Peter.Andreae@ecs.vuw.ac.nz

Evolutionary Computation Research Group, Victoria Uni-
versity of Wellington, PO Box 600, Wellington 6140, New
Zealand

affect the learning performance. Feature selection aims

to improve the quality of feature sets by selecting a

small number of relevant features. Therefore, feature

selection can reduce the dimensionality to avoid the

“curse of dimensionality” (Friedman et al, 2001), lead-

ing to a better learning performance, faster training

process and simpler learned model. This work focuses

on feature selection for classification (Tang et al, 2014).

Feature selection (Guyon and Elisseeff, 2003) is a

challenging task because of its large search space. An

exhaustive search guarantees an optimal feature sub-

set but is impractical in most situations. Evolutionary

computation (EC) has been widely applied to feature

selection because of its potential global search ability,

especially genetic algorithms (GAs) and particle swarm

optimization (PSO). In comparison with GAs, PSO has

fewer parameters and is usually more efficient and ef-

fective in some areas (Eberhart and Shi, 1998). In GAs,

the crossover and mutation operators contribute to its

convergence to the optimal solution, but the two oper-

ators without a careful design might potentially break

good groups of complementary features when solving

feature selection problems. Therefore, PSO is used as a

search method in this work.

Complex feature interactions also make feature se-

lection a challenging task. A good fitness function, which

measures feature subsets’ qualities, should be able to

capture feature interactions. According to evaluation

criteria, feature selection can be divided into two cate-

gories: wrapper and filter approaches. In filters, feature

subsets are evaluated based on the characteristics of

the data, which is independent of any classification al-

gorithm. However, most filter measures only cope with

either continuous or discrete datasets. In addition, it

is usually difficult for a filter measure to detect multi-

way feature interactions. Nguyen et al (2016) attempt
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to compute multi-variate mutual information between

a set of features, which results in promising results but

with a high computation cost. Wrappers use a classifi-

cation algorithm to evaluate feature subsets, which en-

sures to consider feature interactions. Therefore, wrap-

pers usually achieve better classification performance

than filters. In this work, we will use a wrapper ap-

proach to achieve feature selection.

In terms of computation cost, wrappers are usually

more expensive than filters due to involving classifica-

tion processes. This problem is alleviated in our pre-

vious work (Nguyen et al, 2017b), where a surrogate

model for a PSO-based wrapper feature selection is

proposed. In particular, an instance selection algorithm

called DROP3 (Olvera-López et al, 2010) is applied to

select a small number of training instances, which forms

a surrogate training set. The surrogate set is used to

quickly locate promising regions A local search based

on the surrogate training set is developed to use infor-

mation from previous iterations to improve the current

gbest. The results show that although the proposed al-

gorithm is less computationally intensive than using the

original training set, it still can achieve similar or better

classification performance. Although the initial design

of surrogate training sets works well, there are several

key factors that need to be further investigated. For

example, DROP3 usually requires a nicely distributed

training set and may result in missing informative in-

stances or selecting noisy instances. Furthermore, the

relationship between the surrogate training set and the

whole training set is not fully investigated. We will con-

tinue our previous work on surrogate models for feature

selection to address the above issues.

Goal: In this study, based on the previous work (Nguyen

et al, 2017b), we aim to improve and further investigate

the surrogate model for feature selection, which is ex-

pected to increase the classification accuracy while still

having a low computation cost. Particularly, a cluster-

ing algorithm is utilized instead of DROP3 to produce

a better surrogate training set. Furthermore, the rela-

tionship between surrogate and full training sets is also

investigated, from which a dynamic surrogate model is

proposed so that it can adapt with different datasets to

select small number of features with high discriminating

abilities. Specifically, we will investigate the following

questions:

– whether applying the clustering algorithm can im-

prove the qualities of selected features over using

DROP3,

– whether a bigger surrogate training set can lead to

the better evolved feature subsets. Note that when

the surrogate training set’s size is increased, it will

be more similar to the original training set, and

– whether the proposed dynamic surrogate model can

rely on characteristics of datasets to select suitable

surrogate training sets, which helps to evolve better

feature subsets in a short training time.

2 Background

2.1 Particle swarm optimization

In 1995, particle swarm optimization (PSO) (Kennedy,

2011) is proposed, which is inspired by social behav-

iors of bird flocking. The underlying principal of PSO

is the knowledge sharing between particles to guide the

swarm towards optimal points. Each particle has its

own position and velocity in the search space. The ve-

locity of a particle is calculated based on its previous

velocity (momentum), pbest, which is its own best po-

sition (cognitive) and gbest, which is the best position

discovered by its neighbors including itself (social).

PSO is originally developed to optimize continuous

problems. Although it is extended to cope with binary

problems (Kennedy and Eberhart, 1997), its perfor-

mance is still limited in comparison with the contin-

uous one (Xue et al, 2012). Nguyen et al (2017a) pro-

pose a binary PSO called sticky binary PSO (SBPSO).

In SBPSO, the velocity is a probability vector deter-

mining the flipping probability of position entries. The

momentum is redefined as the tendency to stick with

the current position, also known as stickiness property

(stk). The stk is linearly decreased until it is 0 or the

corresponding entry is flipped. The stickiness property

of the dth entry is updated by the following equation:

stkt+1
d =

1, if the bit is just flipped

max(stktd −
1

ustkS
, 0), otherwise

(1)

where t is the ith iteration and ustkS is a number of

iterations to reduce stk from 1 to 0.

Based on stk, flipping probabilities and position en-

tries of a particles are defined as in Eqs. (2) and (3).

pd = is∗(1−stkd)+ip∗|pbestd−xd|+ig∗|gbestd−xd| (2)

where is, ip and ig are the importance of stickiness,

cognitive and social factor.

xt+1
d =

{
1− xtd , if rand() < pd

xtd , otherwise
(3)

The experimental results show that SBPSO is more

efficiently and evolves better solutions than standard

BPSO and probability-based BPSO (Xue et al, 2014)

on feature selection. Therefore, SBPSO is used as the

search mechanism in this work.
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2.2 Related work on feature selection

Feature selection is a difficult task because of its large

search space and complex feature interactions. Although

exhaustive search guarantees the best feature subset, it

is infeasible in most cases due to its extremely high

computation cost. Several techniques have been devel-

oped to reduce the computation cost such as greedy

searches (Li et al, 2014), sequential searches (Whitney,

1971; Marill and Green, 1963; Niu, 2017), which con-

sider only one feature each iteration. Therefore, they

usually suffer from stagnation in local optima.

EC has been widely applied to feature selection be-

cause of its potential global search ability. GAs is the

earliest EC algorithm used to achieve feature selection

(Siedlecki and Sklansky, 1989; Jiang et al, 2017) be-

cause of its natural representation. Besides GAs, genetic

programming (GP) can simultaneously perform feature

selection and build a classifier (Muni et al, 2006). In ad-

dition, GP is suitable for some machine learning tasks,

such as regression (Koza, 1999; Chen et al, 2017). Re-

cently, PSO gains more attention from feature selection

community (Banka and Dara, 2015; Xue et al, 2016) be-

cause of its efficiency and effectiveness. However, since

EC is a population-based optimization family, EC al-

gorithms usually require a large number of evaluations.

Therefore, EC-based feature selection algorithms are

usually computationally intensive. In order to improve

the efficiency, many filter measures are used in EC-

based feature selection (Neshatian et al, 2012; Nguyen

et al, 2016; Chinnaswamy and Srinivasan, 2016).

There is not much attempt to reduce the computa-

tion costs of wrapper EC-based feature selection. Nguyen

et al (2015) improves the efficiency of PSO-based fea-

ture selection by shortening the length of particles. Al-

though the computation time is reduced, the evalua-

tion time mainly remains the same as standard PSO-

based feature selection. The improvement is from the

updating position process and the upper bound of the

number of selected features. Wang and Liang (2016)

directly modify the fitness measure by splitting a train-

ing set into many subsets. From each subset, a number

of features are selected and then all selected features

are combined to form the final feature subset. However,

it is possible that features selected from different sub-

sets might be redundant. In our previous work (Nguyen

et al, 2017b), we use an instance selection algorithm to

form a surrogate training set, which has fewer instances

than the original training set. Therefore, the computa-

tion cost is significantly reduced since the evaluation

time is much shorter. In this work, we will investigate

more on the surrogate model by improving its quality

using a clustering algorithm. In addition, different static

surrogate models with various numbers of instances and

Fig. 1: DROP3 may remove informative instances.

Fig. 2: DROP3 cannot remove noisy instances.

a proposed dynamic surrogate model are examined to

analyze the effect of surrogate training sets.

3 Methodology

In this section, we firstly describe DROP3 and its lim-

itations. We then propose how to use a clustering al-

gorithm to address the limitations. We also propose a

dynamic surrogate model for feature selection, which is

expected to capture characteristics of datasets to evolve

better feature subsets.

3.1 DROP3 and its limitations

In our previous work (Nguyen et al, 2017b), DROP3 is

used to form surrogate training sets. In the first step,

DROP3 removes all instances that are wrongly classi-

fied by its K nearest neighbors, which is expected to

remove noisy instances. After that, all instances are

sorted according to their closest distances to instances

from other classes. The instance with a larger distance

is considered to be removed earlier since they may be

far from its class boundary. An instance is removed if

discarding it does not wrongly classify other instances

that take the instance as their neighbors. The main idea

of DROP3 is to preserve all instances on class bound-

aries and remove all inner instances, which requires

the training set being nicely distributed. Therefore, it

is possible that DROP3 removes informative instances

or remains noisy instances. Let consider two examples

given in Figs. 1 and 2, where there are two class labels

(marked by red and green) and a KNN classification

algorithm is used with K = 3. In Fig. 1, the two green

ones inside the dotted circle have the largest distances

to instances from other classes, which means that they

are considered to be removed first. It is obvious that

removing the two instances does not affect any other

green instances since they are too far from the two in-

stances. Therefore, DROP3 will remove them despite
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they are on the class boundary. The consequence can

be seen in classifying an unseen instance (marked by

a question mark). If the two green instances are not

removed, it will be classified as a green instance, but

removing them changes the class label of the unseen

instance. Thus DROP3 removes informative instances.

Fig. 2 gives an example where DROP3 is not able to

remove noisy instances. It can be seen that in Fig. 2,

there are three noisy red instances located inside the

region of the green class. The distances from the three

red instances to the green class are definitely smaller

than any other red instances, so according to DROP3

they are likely to be on the class boundary. In addition,

removing one of the three red instances will wrongly

classified the other two, so none of them is discarded by

DROP3. It can be seen that even DROP3 is designed

specifically for KNN, it may result in a poor surrogate

training set. In the next section, we will show how a

clustering algorithm can address DROP3’s problems.

3.2 Clustering-based surrogate model

The problem of DROP3 is that it considers instances

from the same class as an instance group despite they

may be far from each other as shown in Figs. 1 and 2.

On the other hand, a clustering algorithm divides in-

stances from the same class into many clusters. There-

fore, in Fig. 1, the two marked green instances are likely

to be grouped to a cluster, which ensures that informa-

tion from the two instances is preserved.

A representative is formed for each cluster, which

will contribute as one instance into the surrogate train-

ing set. Therefore, the size of surrogate training set is

equal to the number of clusters. In this work, the cen-

troid of a cluster, which is the instance closest to the

cluster’s mean, is selected as the representative. The

first reason for selecting the centroid is to ensure a fair

comparison with DROP3, which also selects original in-

stances to form the surrogate training set. The second

is that using original instances can preserve the rela-

tionships/interactions between features while building

a new instance from a cluster is more likely to construct

new feature interactions, which do not exist in test sets.

Note that a cluster may not be pure, which means that

it may contain instances from different classes. There-

fore, only instances from the majority class, which con-

tributes the largest number of instances in the clus-

ter, are used to select the representative for the cluster.

Hence in Fig. 2, the three noisy red instances along with

their surrounding green instances are grouped in the

same cluster and the noisy instances will be removed

since the red class is the minority one in this cluster.

The question is which clustering algorithm should

be used. K-means is proposed about 50 years ago and

Fig. 3: Example of the agglomerative clustering algorithm.

widely used in clustering (MacQueen et al, 1967), which

may be a good option. However, the main task of this

work is to analyze how surrogate training sets with

different sizes affect performances of the selected fea-

ture subset. Therefore, K-means has to be run many

times with different numbers of clusters, which is time

consuming. Agglomerative clustering (AGG) (Murtagh

and Legendre, 2014) is a bottom-up hierarchical clus-

tering algorithm in which each instance starts with its

own cluster. When moving up the hierarchy, the two

closest clusters are merged into one cluster. An exam-

ple of the agglomerative clustering algorithm is given

in Fig. 3.

Note that although both DROP3 and AGG are de-

terministic algorithms, they have very different outputs

and behaviors. DROP3 directly produces a unique sur-

rogate training set for each dataset. On the other hand,

AGG results in a set of possible clustering partitions,

whose numbers of clusters (#c) can be from 1 to the

total number of instances in the original training set (as

shown in Fig. 3). If #c is decided, AGG produces only

one unique clustering partition containing a unique set

of clusters. Since only the centroid instance is selected

from each cluster, the size of surrogate set formed by

AGG is equal to the number of clusters #c.

3.3 Dynamic clustering-based surrogate model

In SBPSO-based feature selection, the position of each

particle is a binary vector, in which each entry corre-

sponds to an original feature. If the entry’s value is

1, the corresponding feature is selected. Otherwise, the

feature is discarded. Therefore, each particle defines a

feature subset which is evaluated according to the fol-

lowing fitness function:

fitness = α∗Error+(1−α)∗ #selectedFeatures

#originalFeatures
(4)

where Error is the classification error rate, which can

be measured by either the surrogate training set or the

original training set, α is used to control the contri-

butions of the two objectives. From now, if Error is

measured by the original training set, the fitness value
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is called real fitness. If it is measured by the surrogate

training set, the fitness value is called surrogate fitness.

Since the surrogate training set is used to estimate

possible good regions, it is important to ensure that

the surrogate fitness value should be consistent with

the real fitness value. For example, if a feature subset

A is better than a feature subset B in terms of the sur-

rogate fitness value, A should also be better than B

when they are evaluated by the original training set.

However, since feature subsets are changed during the

evolutionary process, the consistency between the sur-

rogate training set and the original training set may

not be preserved. To address this problem, a dynamic

clustering-based surrogate model is proposed. The task

can be described as: “Given a pool of surrogate training

sets, P = {S1, S2, ..., Sm}, which surrogate training set

Si should be used to evaluate feature subsets.”

In the initialization process, each particle is ran-

domly initialized. After evaluating the particles using

the original training set S0, the position xbest with the

best real fitness value f0 is recorded to find out the

most suitable surrogate training set. Particularly, xbest
is evaluated on m surrogate training sets, which results

in m surrogate fitness values {f1, f2, ..., fm}. The sur-

rogate training set, which has the smallest difference

in comparison with the original training set, i.e. the

smallest |fi − f0|, is used to evaluate feature subsets

in the following iterations. Hence, even in the initial-

ization step, the surrogate training set is dynamically

determined based on its consistency with the original

training set.

In the first Is iterations, feature subsets are evalu-

ated by the surrogate training set, which is also dynam-

ically updated to preserve the consistency with the orig-

inal training set. However, updating the surrogate set

too frequently makes PSO more difficult to adapt with

changes in the fitness landscape. Therefore, the surro-

gate one is only updated when the real fitness value

of gbest is not improved for a certain number of itera-

tions (NIStep). The process of finding the most suit-

able surrogate training set is similar to the method used

in the initialization process, except for xbest is replaced

by gbest. After the surrogate process, i.e. the first Is
iterations, is finished, the original training set is used

to evaluate the candidate solutions. The pseudo-code of

the dynamic surrogate model is given in Algorithm 1.

4 Experiment design

4.1 Datasets

The proposed methods are tested on 12 datasets chosen

from the UCI machine learning repository (Lichman,

2013). The datasets are selected so that they have dif-

ferent numbers of features (#Fs), classes and instances,

Algorithm 1 Dynamic surrogate model
1: Input: A pool of surrogate training sets, P =
{S1, S2, ..., Sm}, built by AGG.

2: randomly initialize the PSO population;
3: find the best position xbest in the initialized population;
4: select the most suitable SurrogateSet in P based on

xbest;
5: while maximum number of iterations is not reached do
6: if current iteration is smaller than Is then
7: evaluate particles using SurrogateSet;
8: update pbest and gbest for each particle;
9: evaluate gbest using the original training set;

10: if gbest’s real fitness is not improved for NIStep
iterations then

11: select the most suitable SurrogateSet in P based
on gbest;

12: end if
13: else
14: evaluate particles using the original training set;
15: update pbest and gbest for each particle;
16: end if
17: apply sampling local search on gbest
18: update velocities and positions of particles;
19: end while
20: return gbest as the final feature subset;

Table 1: Datasets.

Dataset #Fs #Classes #Instances

Australian 14 2 6650
ImageSegmentation 19 7 210
German 24 2 1000
WBCD 30 2 569
Ionosphere 34 2 351
Sonar 60 2 208
Hillvalley 101 2 1213
Arrhythmia 279 16 452
LSVT 310 2 126
Madelon 500 2 4400
Isolet5 617 5 7797
Multiple Features 649 10 2000

which can be seen in Table 1. Each dataset is divided

into training and test sets, so that they contain 70% and

30% instances respectively and the class distribution is

roughly preserved.

In the experiments, the performances of different

surrogate training sets are examined. Firstly, the DROP3

algorithm and the agglomerative clustering algorithm

are compared. To ensure a fair comparison, the num-

ber of clusters in the clustering algorithm is equal to the

number of instances selected by DROP3. Therefore, the

two algorithms result in two surrogate training sets with

the same size, which are called “DROP3” and “AGG”,

respectively. Since it was shown in our previous work

(Nguyen et al, 2017b) that the surrogate model built

by DROP3 was already better than an improved ver-

sion of sequential feature selection search, AGG is not

compared with sequential searches due mainly to the

page limit.
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Fig. 4: Evolutionary process of PSO on the Madelon dataset

Table 2: Compare different Is values against Is = 75.

Dataset Is = 0 Is = 25 Is = 50 Is = 100
German + = = +
Sonar = = = =

Arrhythmia - = = +
Isolet5 = = = +

However, DROP3 usually selects a very small num-

ber of instances. For example, on Arrhythmia, the sur-

rogate set built by DROP3 contains only 26 instances,

which is even 10 times smaller than the total number

of features. Therefore, we decide to examine surrogate

training sets produced by the clustering algorithm with

various numbers of instances. In particular, five surro-

gate training sets, whose sizes range from 10% to 50%

of the original training set, are generated. The lower

bound 10% is to ensure that the surrogate training sets

contain enough training instances. The upper bound is

set to 50% so that the surrogate model still can signifi-

cantly reduce the computation cost over using the orig-

inal training set. The five surrogate training sets form

a training set pool, from which the dynamic surrogate

model picks the most suitable training set during the

surrogate process. The percentages i.e “10%”, “20%”,

“30%”, “40%” and “50%” are used to name methods

with corresponding surrogate training sets, while the

dynamic surrogate model is called “Dynamic”.

4.2 Parameter settings

The feature subsets are evaluated using a KNN clas-

sification algorithm, where K is set to 5 so that it is

able to avoid issues caused by noisy instances while

still has good efficiency. α in Eq. (4) is set to 0.9 to en-

sure that the classification performance has higher pri-

ority than the number of selected features. For SBPSO,

im, ip, ig, and ustkS are set to 0.1154, 0.4423,0.4423,

and 40, respectively, as suggested by results in Nguyen

et al (2017a). 5 different values of Is ranging from 0

to 100 are examined and the results show that 75 is

the most suitable setting. Table 2 shows results of sta-

tistical significance tests, which compare between the

value 75 and the other four different values of Is on

four datasets with different numbers of features. “+”/

“=” / “-” means that 75 is significantly better/ similar

or worse than the other values. It can be seen that the

value of 75 achieves similar or better performance than

the three smaller values (0, 25, 50) while being less com-

putationally intensive. In addition, the value 75 is sig-

nificantly better than 100 i.e. using only the surrogate

training sets. The population size is set to the number

of features and limited by 100. The maximum number

of iterations is set to 100. NIStep is set to 5 as an in-

dication that the algorithms might be trapped in local

optima. An evolutionary process of PSO on the Made-

lon dataset is shown in Fig. 4. It can be seen that if the

gbest’s fitness value (vertical axis) is not changed for

more than 5 iterations, it is very likely that the fitness

value is not changed in the following iterations.

5 Results and discussions

5.1 Effect of applying the clustering algorithm

Table 3 shows the comparison between applying DROP3

and the agglomerative (AGG) clustering algorithm. In

the table, “#Features” means the number of selected

features, “Training” and “Testing” represent the train-
ing and testing accuracies, respectively. Note that both

DROP3 and AGG use the same number of instances to

build surrogate training sets. The two models are com-

pared using Wilcoxon test, a significance signed rank

test with significance level set to 0.05. “↑” or “↓” means

that AGG is significantly better or worse than DROP3,

while “◦” indicates that there is no significant differ-

ence between the two algorithms. In terms of training

accuracy, AGG is significantly better than DROP3 on

4 datasets while being worse only on German. On the

test set, the feature subsets selected by AGG are never

worse than the ones using DROP3. On 3 out of the 12

datasets, AGG’s accuracies are significantly higher than

DROP3’s. In addition, the feature subsets selected by

AGG are smaller than the ones of DROP3 on 6 datasets.

On the other 4 datasets, the two algorithms select the

similar number of features. The experimental results

show that given the same number of selected instances,

AGG can maintain more informative instances to form

more consistent surrogate training sets, which results
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Table 3: Comparison between DROP3 and Agglomerative Clustering algorithms.

Dataset
#Features Training Testing Time

DROP3 AGG DROP3 AGG DROP3 AGG DROP3 AGG

Australian 2.500(↓) 2.800 77.34(◦) 81.52 76.14(◦) 80.49 0.26 0.29
ImageSegmentation 4.000(↑) 3.400 96.64(◦) 96.46 94.89(◦) 95.33 0.05 0.05
German 5.300(↑) 3.600 78.36(↓) 75.60 69.16(◦) 69.37 0.95 1.00
WBCD 2.000(◦) 2.000 94.64(↑) 95.18 93.18(↑) 94.54 0.34 0.38
Ionosphere 3.300(◦) 3.500 93.97(◦) 93.76 86.31(↑) 87.68 0.16 0.18
Sonar 10.20(◦) 11.10 89.77(↑) 91.24 78.84(◦) 77.78 0.14 0.15
Hillvalley 22.30(↑) 15.50 74.37(◦) 74.65 58.55(◦) 59.07 7.06 7.35
Arrhythmia 26.20(↓) 33.40 95.88(◦) 95.92 94.94(◦) 94.90 0.84 1.04
LSVT 31.20(↑) 27.50 87.31(◦) 86.55 66.58(◦) 67.63 0.09 0.09
Madelon 195.3(↑) 152.6 88.99(↑) 89.91 79.64(↑) 81.85 62.19 55.65
Isolet5 98.70(↑) 90.40 99.37(◦) 99.38 98.74(◦) 98.72 21.36 21.31
Multiple Features 94.00(◦) 101.4 99.52(↑) 99.55 99.00(◦) 99.01 27.28 32.11

in better classification accuracies. Although AGG and

DROP3 use surrogate training sets with the same size,

AGG usually selects a smaller number of features. The

possible reason is that AGG can remove the outliers,

so it selects only necessary features to distinguish in-

stances from different classes. DROP3 may select some

noisy instances, which possibly requires additional fea-

tures to correctly classify them.

5.2 Results of clustering-based surrogate models

The results of clustering-based surrogate models with

different sizes of the surrogate set are shown in Table 4.

The best classification accuracies on both training and

test sets are marked in bold. In comparison with other

clustering-based models, AGG can achieve the best per-

formance on only 1 out of the 24 cases (including both

training and testing accuracies). In terms of the number

of selected features, AGG usually selects a smaller num-

ber of features than the other methods. The reason for

this pattern is that AGG uses the smallest number of

instances, so it does not need to select as many features

as the other methods. This is an example of underfit-

ting, where AGG does not have enough instances to

select a sufficient number of informative features which

are necessary for classifying unseen instances.

As can be seen in Table 4, depending on characteris-

tics of the datasets, the best accuracies are achieved by

different sizes of surrogate training sets. Mostly the sur-

rogate training sets ranging from 30% to 50% produce

the best accuracies since these training sets are more

similar to the original ones. However, on 3 datasets,

Australian, ImageSegmentation and WBCD, 10% and

20% achieve the best performance, which may be an

indication that the 3 datasets have noisy instances and

small size surrogate training sets help to eliminate these

instances. An important pattern shown in Table 4 is the

consistency between training and testing performance.

Specifically, on 6 out of the 12 datasets, both best train-

ing and testing accuracies are achieved by the same

method. On the other datasets, although the exact con-

sistency does not happen, the method with the best

testing accuracy usually has the second best training

performance. This pattern shows that to some extent,

using surrogate models can help to avoid overfitting.

In order to analyze the condition for a surrogate

model to locate good search regions, for each surrogate

model (10%-50%), the evolutionary process of the best

run is shown in Fig. 5. The horizontal axis is iterations

and the vertical axis shows the real fitness function of

gbest on each iteration. Due to the space limitation,

only 6 out of the 12 datasets are shown. The evolu-

tionary processes on the other 6 datasets have similar

patterns. Note that in the first 75 iterations, particles

are evaluated by the surrogate set, which means that

in terms of the surrogate fitness, the later gbest is al-

ways not worse than the earlier gbest. However, on the

figure, the gbest is re-evaluated by using the original

training set, which does not guarantee that the later

gbest has better real fitness value. Therefore, the less

fluctuating evolutionary process shows that the corre-

sponding surrogate model is more consistent with the

original training set. By collating between Table 4 and

Fig. 5, it can be seen that usually the method with the

least fluctuating evolutionary process yields the best

classification accuracy. For example, on the Arrhyth-

mia dataset, the best training and testing accuracies

are achieved by the 50% surrogate model, which has

the least fluctuating evolutionary process.

5.3 Results of the dynamic surrogate model

As illustrated in Section 5.2, in order to achieve good

classification performance, it is important to maintain

the consistency between the surrogate and the original

training sets. However, which surrogate model should

be selected heavily depends on datasets. Therefore, the

dynamic surrogate model is designed with an expecta-

tion of selecting the most suitable surrogate training set

during the evolutionary process. The results of the dy-

namic one are shown by the “Dyn” column in Table 4. A
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Table 4: Results of clustering-based surrogate models.

Dataset
Training accuracy Time

AGG 10% 20% 30% 40% 50% Dyn AGG 10% 20% 30% 40% 50% Dyn

Australian 81.52(◦) 85.42(◦) 82.13(◦) 80.78(◦) 81.82(◦) 79.22(◦) 80.15 0.29 0.29 0.29 0.35 0.43 0.47 0.46
ImageSeg 96.46(↑) 96.69(◦) 97.11(◦) 96.95(◦) 96.90(◦) 97.02(◦) 96.94 0.05 0.04 0.04 0.05 0.06 0.07 0.06
German 75.60(↑) 76.77(◦) 80.41(↓) 82.55(↓) 81.21(↓) 80.97(◦) 78.56 1.00 0.95 1.16 1.38 1.69 2.05 1.35
WBCD 95.18(◦) 95.92(↓) 95.19(◦) 94.74(↑) 95.06(◦) 95.31(↓) 95.14 0.38 0.37 0.42 0.49 0.59 0.73 0.67
Ionosphere 93.76(◦) 93.44(◦) 93.57(◦) 93.75(◦) 93.89(◦) 93.89(◦) 93.66 0.18 0.17 0.19 0.23 0.28 0.34 0.30
Sonar 91.24(◦) 90.28(↑) 91.13(◦) 91.08(◦) 91.38(◦) 91.19(◦) 91.08 0.15 0.11 0.12 0.14 0.17 0.21 0.17
Hillvalley 74.65(◦) 74.60(◦) 74.38(◦) 74.92(◦) 74.48(◦) 74.82(◦) 74.85 7.35 6.43 7.10 8.35 10.08 12.74 10.78
Arrhythmia 95.92(↑) 95.74(↑) 95.73(↑) 96.06(↑) 96.13(◦) 96.18(◦) 96.17 1.04 22.77 1.28 1.45 1.74 2.15 2.14
LSVT 86.55(↑) 86.55(↑) 85.11(↑) 89.20(◦) 88.14(↑) 89.62(◦) 89.43 0.09 0.08 0.10 0.11 0.14 0.17 0.15
Madelon 89.91(↑) 89.64(↑) 89.82(↑) 90.09(◦) 90.47(◦) 90.61(◦) 90.41 55.65 52.65 60.48 66.62 81.18 99.94 91.34
Isolet5 99.38(◦) 99.34(↑) 99.35(↑) 99.38(◦) 99.38(◦) 99.40(◦) 99.40 21.31 16.75 17.68 20.91 25.92 31.72 32.97
MultipleFs 99.55(◦) 99.54(◦) 99.55(◦) 99.57(◦) 99.55(◦) 99.55(◦) 99.56 32.11 30.23 50.40 41.05 46.99 54.76 58.74

Dataset
Testing accuracy #Features

AGG 10% 20% 30% 40% 50% Dyn AGG 10% 20% 30% 40% 50% Dyn

Australian 80.49(◦) 82.50(◦) 81.02(◦) 79.36(◦) 80.45(◦) 78.02(◦) 78.88 2.8 3.0 2.8 2.8 2.8 2.6 2.6
ImageSeg 95.33(◦) 95.09(↑) 95.97(◦) 95.82(◦) 95.86(◦) 95.74(◦) 95.75 3.4 3.9 3.9 3.8 3.9 3.9 4.0
German 69.37(◦) 68.59(◦) 68.99(◦) 69.50(↓) 69.22(◦) 69.45(↓) 68.56 3.6 3.7 5.7 6.1 6.0 5.8 4.9
WBCD 94.54(◦) 93.39(↑) 93.88(◦) 92.71(↑) 93.53(↑) 94.62(↓) 94.13 2.0 2.6 2.2 2.4 2.4 2.1 2.2
Ionosphere 87.68(◦) 88.09(◦) 88.00(◦) 88.25(◦) 87.52(◦) 87.65(◦) 87.52 3.5 3.6 3.4 3.4 3.6 3.7 3.4
Sonar 77.78(◦) 77.88(◦) 78.63(◦) 79.74(◦) 79.15(◦) 79.52(◦) 79.42 11.1 11.6 10.7 12.3 12.8 11.9 13.1
Hillvalley 59.07(◦) 58.98(◦) 58.44(◦) 58.86(◦) 59.14(◦) 58.37(◦) 58.88 15.5 20.5 19.2 16.6 16.1 18.4 19.3
Arrhythmia 94.90(◦) 94.81(↑) 94.74(↑) 94.94(↑) 95.09(◦) 95.16(◦) 95.16 33.4 44.9 43.3 37.7 33.5 28.2 28.3
LSVT 67.63(↑) 67.63(↑) 67.28(↑) 71.84(◦) 69.21(↑) 75.97(◦) 74.74 27.5 27.5 30.6 30.1 30.6 36.0 32.9
Madelon 81.85(↑) 80.80(↑) 81.91(◦) 82.65(◦) 83.34(↓) 82.89(◦) 82.64 152.6 169.3 154.2 144.4 124.8 132.9 138.4
Isolet5 98.72(◦) 98.66(◦) 98.67(◦) 98.65(◦) 98.68(◦) 98.70(◦) 98.70 90.4 108.0 92.1 90.7 87.5 84.2 85.0
MultipleFs 99.01(◦) 99.04(◦) 99.04(◦) 99.07(◦) 99.04(◦) 99.05(◦) 99.06 101.4 112.3 109.5 95.2 92.0 88.6 88.5
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Fig. 5: Real evolutionary processes on different sizes of surrogate training sets.
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Table 5: Average ranks of clustering-based surrogate models.

Term AGG 10% 20% 30% 40% 50% Dyn

Training 4.58 5.50 4.75 3.59 3.66 2.33 3.57
Testing 4.25 5.17 4.58 3.42 3.50 3.17 3.92

Wilcoxon signed rank test is used to compare between

the dynamic and other fixed-size surrogate models. “↑”/

“↓” or “◦” shows that the dynamic surrogate model is

significantly better, worse or no significant difference in

comparison with the others.

On training sets, except for German, the dynamic

model (Dyn) achieves similar or better performance

than the other methods. Specifically, Dyn is signifi-

cantly better than AGG on 5 datasets. From 10% to

40%, the number of datasets on which Dyn is superior

ranges from 5 to 1. Similarly, on the test sets, except for

the 50% surrogate, Dyn is never worse than the other

models on most datasets. On each dataset, the 7 mod-

els are sorted according to their accuracies and their

average ranks on all datasets are shown in Table 5. The

smaller the rank, the better the method. It can be seen

that on the training sets, Dyn is the second best and it

is only worse than 50%, which is understandable since

the 50% surrogate training set is the most similar to the

original training set. However, on the test sets, Dyn is

only ranked at the 4th position, which is an indication

of overfitting. The possible reason is at the step finding

the best suitable surrogate training set (line 10 in Al-

gorithm 1), which can be considered as a local search.

In terms of computation time, 50% is the only model

which is worse than Dyn. However, in comparison with

AGG, Dyn is at most 2 times slower, particularly less

than 1.5 times on 9 out of the 12 datasets. It was shown

in our previous work (Nguyen et al, 2017b) that the sur-

rogate model built by DROP3 was already 3-4 times

less computationally expensive than using the original

training set. Given that AGG and DROP3 have the

same computation cost, one can say that both static

(AGG) and dynamic (DYN) can reduce the computa-

tion cost over using the original training set.

The experimental results show that the dynamic

model can adapt with different datasets to select the

suitable surrogate training set, which results in similar

or better performance than other algorithms on most

datasets. However, the dynamic model may suffer from

the overfitting problem, which results in less general

feature subsets than the other algorithms.

6 Conclusions and future work

This work investigates the effect of surrogate models

on feature selection. Firstly, the quality of the surro-

gate training set is improved by a clustering algorithm,

which divides the original training set into many clus-

ters. The surrogate training set is formed by selecting

a centroid instance as a representative of each clus-

ter. The experimental results show that when select-

ing the same number of instances, the clustering-based

surrogate model can maintain or improve the classifica-

tion performance while selecting fewer features than the

DROP3-based surrogate model on most datasets. In ad-

dition, various clustering-based surrogate models with

different numbers of instances are examined. The re-

sults highlight the importance of selecting enough infor-

mative instances to avoid underfitting. It is also shown

that to some extent using the surrogate models can im-

prove the generalization of evolved feature subsets. In

addition, it is also necessary to maintain the consistency

between the surrogate and the original training sets. To

ensure the consistency, a dynamic surrogate model is

proposed which automatically selects the most suitable

surrogate training set during the evolutionary process.

The dynamic model can adapt with different datasets

to consistently achieve similar or better training accu-

racies than other static surrogate models.

Although the dynamic model achieves good results,

there are issues which we will investigate in the fu-

ture. For example, the dynamic model may suffer the

overfitting problem, which makes its testing accuracies

are not as good as its training accuracies. In addition,

the clustering-based models have the same size on all

datasets. It would be better if the pool of surrogate

training sets is designed with respect to the character-

istics of datasets. However, it is not an easy task since

it requires a deep understanding of each dataset. In the

future we will further investigate and develop surrogate

models on larger datasets in terms of both number of

features and instances.
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