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I. COMPUTATION TIME (MEAN AND STANDARD
DEVIATION) ON KNAPSACK AND FEATURE SELECTION

DATASETS

TABLE I: Computation time on Knapsack datasets (seconds).

Dataset NMBDE Quantum Up TV Stat Dyn
GK01 1.21(0.02) 1.00(0.02) 1.36(0.02) 1.36(0.02) 0.60(0.01) 0.63(0.02)
GK02 1.23(0.03) 1.03(0.03) 1.39(0.03) 1.39(0.03) 0.64(0.02) 0.67(0.02)
GK03 1.82(0.04) 1.55(0.04) 2.06(0.04) 2.05(0.05) 0.94(0.03) 0.99(0.03)
GK04 1.91(0.04) 1.65(0.04) 2.16(0.05) 2.15(0.04) 1.04(0.03) 1.09(0.04)
GK05 2.40(0.06) 2.05(0.04) 2.74(0.06) 2.71(0.06) 1.26(0.04) 1.33(0.06)
GK06 2.53(0.06) 2.19(0.05) 2.87(0.06) 2.86(0.07) 1.39(0.04) 1.47(0.07)
GK07 5.98(0.16) 5.15(0.11) 6.74(0.12) 6.70(0.12) 3.63(0.23) 3.83(0.35)
GK08 6.28(0.12) 5.44(0.10) 7.05(0.12) 7.02(0.12) 4.03(0.28) 4.18(0.37)
GK09 17.70(0.40) 15.55(0.41) 20.12(0.47) 20.01(0.46) 12.37(0.47) 12.78(0.56)
GK10 18.54(0.25) 16.45(0.27) 21.04(0.27) 20.96(0.27) 13.39(0.40) 13.75(0.66)
GK11 34.57(0.56) 31.38(0.66) 38.85(0.57) 38.95(0.55) 24.16(0.87) 24.32(0.49)
UCI500 5.64(0.12) 4.77(0.12) 6.46(0.16) 6.35(0.12) 3.13(0.17) 3.21(0.17)
UCI1000 11.23(0.34) 9.54(0.25) 12.79(0.34) 12.62(0.27) 6.98(0.57) 6.93(0.46)
UCI2000 22.35(0.59) 19.64(0.58) 25.75(0.67) 25.58(0.69) 13.70(0.66) 13.85(0.73)
UCI5000 56.02(1.37) 50.41(1.79) 65.35(1.84) 65.76(1.85) 38.50(1.97) 40.62(1.30)
ISCI500 5.58(0.09) 4.74(0.09) 6.38(0.09) 6.31(0.10) 3.18(0.12) 3.26(0.11)
ISCI1000 11.03(0.19) 9.54(0.19) 12.67(0.19) 12.48(0.18) 6.97(0.40) 7.10(0.35)
ISCI2000 22.15(0.35) 19.45(0.46) 25.42(0.42) 25.25(0.41) 13.59(0.71) 13.24(0.76)
ISCI5000 55.43(0.98) 50.07(1.35) 64.16(1.13) 64.66(1.02) 36.53(1.91) 37.90(1.27)
SCI500 5.61(0.12) 4.79(0.12) 6.43(0.12) 6.35(0.11) 3.33(0.18) 3.35(0.18)
SCI1000 11.11(0.24) 9.67(0.23) 12.68(0.26) 12.62(0.27) 7.28(0.49) 7.20(0.41)
SCI2000 22.24(0.43) 19.51(0.59) 25.49(0.55) 25.47(0.59) 14.73(0.78) 14.97(0.79)
SCI5000 55.74(1.14) 49.98(1.44) 64.85(1.69) 65.13(1.71) 36.63(1.79) 38.41(1.00)
WCI500 5.60(0.10) 4.77(0.09) 6.39(0.09) 6.36(0.08) 3.22(0.12) 3.31(0.10)
WCI1000 11.07(0.19) 9.64(0.16) 12.65(0.18) 12.54(0.17) 7.07(0.45) 7.17(0.36)
WCI2000 22.13(0.31) 19.72(0.39) 25.46(0.36) 25.36(0.38) 13.69(0.70) 13.41(0.74)
WCI5000 55.75(0.88) 50.19(1.15) 64.49(0.96) 65.06(0.91) 37.47(0.62) 38.35(1.20)

Table I shows the computation time on 11 GK datasets
and 16 high-dimensional datasets. In the table, the shortest
and second shortest computation times are marked in bold
and underlined, respectively. TV stands for Time Varying
BPSO. The number in the brackets is the standard deviation
time on each dataset. It can be seen that on most datasets,
Static SBPSO is the most efficient algorithm while Dynamic
SBPSO is the second fastest one. In comparison with the
mean computation time, the standard deviation is small on
all datasets, which illustrates the stability of the proposed
algorithm on different datasets.

Table II shows the computation time on 15 feature selection
datasets. It can be seen that on most cases Static SBPSO is
the most efficient or the second most efficient algorithms.
Different from Knapsack, the computational time in feature
selection heavily depends on the number of selected features.
Since Static and Dynamic SBPSO usually select smaller
numbers of features than other algorithms, they are more
efficient, especially on datasets with large numbers of features
such as Madelon and Isolet5.

II. PARAMETER STUDIES

Figs. 1, 2, 3 show the experimental results of different
settings for is, α, and ustkS. In Section V (Parameter
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Fig. 1: Average profit values of is. (red – Average Profits,
blue – Maximum Profits, green – Minimum Profits).
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Fig. 2: Average profit values of α.

Study) of the paper, the parameters are examined on six
knapsack datasets: Weing1, Weish15, GK01, GK05, SCI500,
and ISCI1000. However, Figs. 2-4 in the paper only show the
parameter results on three datasets: Weing1, GK05, SCI500.
In this supplementary material, Figs. 1-3 show full results of
parameter study on the six datasets.

It can be seen that among the three parameters, is has
the most significant impact on the performance of SBPSO.
However, the average profits of SBPSO are stable when is
varies between 2/n and 10/n. From left to right, top to bottom,
the datasets are presented in the order of increasing the number
of items. As can be seen in Fig. 1, when the number of items
is increased, the best and most stable setting of is is getting
smaller. For example, on Weing1, the best settings of is are
8/n, 9/n, and 10/n. On Weish15 and GK01, the best settings
are 5/n and 7/n. On the last three datasets, the best setting of
is is 3/n.

Fig. 2 illustrates the profit values obtained by three different
settings of α. It can be seen that on the six datasets, there is
no significant difference between the three values. However,
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TABLE II: Computation time on feature selection datasets (seconds).

Dataset NMBDE Quantum Up TV Stat Dyn
Wine 3.28(0.06) 3.26(0.05) 3.26(0.07) 3.25(0.07) 3.28(0.07) 3.29(0.10)
Australian 53.27(1.77) 53.01(2.26) 53.76(1.74) 53.66(1.51) 54.14(0.78) 54.47(1.58)
Zoo 1.48(0.06) 1.45(0.06) 1.47(0.05) 1.48(0.04) 1.47(0.04) 1.50(0.07)
Vehicle 106.52(3.22) 105.56(2.78) 106.12(2.96) 106.31(3.26) 105.57(2.21) 107.11(3.60)
German 206.90(4.86) 204.64(6.57) 204.88(6.15) 204.00(5.95) 204.15(4.23) 207.04(7.78)
WBCD 73.80(14.06) 74.82(2.01) 71.92(19.24) 76.70(3.05) 75.99(1.51) 78.30(3.12)
Ionosphere 33.06(1.13) 32.35(0.84) 33.11(1.08) 32.82(0.96) 32.87(0.98) 33.30(1.00)
Sonar 20.84(0.43) 20.22(0.39) 20.93(0.42) 20.65(0.39) 20.97(0.60) 20.92(0.66)
Movementlibras 105.47(2.28) 103.25(3.94) 106.75(3.69) 103.14(2.46) 101.77(3.00) 102.58(3.02)
Hillvalley 1438.87(44.54) 1422.43(62.78) 1460.25(55.61) 1425.26(63.06) 1410.05(53.34) 1416.21(50.87)
Musk1 266.75(13.48) 259.78(14.23) 258.35(12.00) 261.79(12.59) 253.14(12.77) 254.44(10.99)
Arrhythmia 273.22(18.61) 263.63(15.56) 286.21(16.92) 267.64(17.08) 254.00(14.80) 258.86(12.21)
Madelon 13666.27(1168.68) 13061.01(987.67) 13418.19(2721.18) 13170.90(1155.07) 13020.71(1106.16) 12690.82(1191.98)
Isolet5 4874.18(411.63) 4557.99(402.50) 5222.76(499.20) 4659.38(406.20) 4458.97(371.79) 4298.37(354.85)
MultipleFeatures 8308.84(671.95) 7561.56(603.73) 8641.53(605.81) 7730.79(626.67) 6820.79(501.22) 7111.59(522.64)
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Fig. 3: Average profit values of ustkS.

α = 2.0 usually gives slightly better profits than other α values
(on five out of the six datasets). The pattern illustrates that it
would be better to allow pbest contributes more than gbest so
that the population can maintain its diversity.

Fig. 3 shows the results of different values of ustkS. It can
be seen that among the three parameters, SBPSO depends the
least on ustkS. On five out the six datasets, different settings
of ustkS results in very similar profits. However, there is still a
pattern of ustkS which is when the number of items increases,
the best setting of ustkS also increases. The pattern indicates
that when the search space is large and complex, it would be
better to search around promising search regions longer than
to switch to other regions quickly.

By setting is = 4/n and ustkS = 8 × T/100, we further
examined 9 different values of α ranging from 0.1 to 10.0.
The experimental results are shown in Table III. As can be
seen from the table, the best settings are mainly three values
0.5, 1.0, and 2.0. When α is set to very large (such as 10) or
small (such as 0.1) values (extreme imbalance contributions of
gbest and pbest), the final profit is usually small. Especially,
setting α to 10.0 results in the worst (smallest) profit on six
out of the seven cases. The convergence curves in Fig. 4 show
that when α is too large — from 5.0 to 10.0 — the swarm
focuses more on exploration due to a large contribution of
pbest. Meanwhile, a small value of α such as 0.1 or 0.125
results in more exploitation due to a large contribution of
gbest. Therefore, it is recommended to set α in the range
of 0.5-2.0 to have a balanced trade-off between exploration
and exploitation.
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Fig. 4: Convergence curves of six different α values.

III. RESULTS ON HIGH-DIMENSIONAL DATASETS WITH
MORE THAN 3000 ITERATIONS

Fig. 5 of the paper presents the convergence curves of six al-
gorithms: NMBDE, Quantum BPSO, Up BPSO, TimeVarying
BPSO, Static SBPSO, and Dynamic SBPSO. It can be seen
that on high-dimensional Knapsack datasets, the convergence
curves of all the six algorithms are still increasing rapidly
around 1000 iterations. Therefore, the six algorithms were
further examined on the high-dimensional datasets with 3000
iterations. The average profits of 30 independent runs are
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TABLE III: Results of different α values

Dataset n 0.1 0.125 0.2 0.5 1.0 2.0 5.0 8.0 10.0
GK01 100 3.682E3 3.685E3 3.680E3 3.681E3 3.693E3 3.714E3 3.703E3 3.690E3 3.688E3
GK05 200 7.380E3 7.394E3 7.386E3 7.380E3 7.393E3 7.413E3 7.381E3 7.364E3 7.357E3
GK11 2500 9.342E4 9.342E4 9.340E4 9.342E4 9.346E4 9.349E4 9.339E4 9.335E4 9.333E4
SCI500 500 1.589E5 1.589E5 1.591E5 1.593E5 1.593E5 1.590E5 1.582E5 1.576E5 1.572E5
ISCI1000 1000 2.622E5 2.623E5 2.624E5 2.624E5 2.620E5 2.610E5 2.597E5 2.585E5 2.577E5
UCI2000 2000 8.022E5 8.028E5 8.041E5 8.044E5 8.024E5 7.997E5 7.930E5 7.894E5 7.867E5
WCI5000 5000 1.325E6 1.324E6 1.323E6 1.318E6 1.312E6 1.307E6 1.305E6 1.302E6 1.299E6

shown in Table IV. As can be seen from the table, the pattern
of 3000 iterations is similar to that of 1000 iterations. Both
static and dynamic SBPSO are still ranked as the top two
algorithms. Dynamic SBPSO achieves the best profit (marked
in bold) on most datasets while static SBPSO usually achieves
the second best profit. Among the four benchmark algorithms,
Time Varying BPSO is still the most promising one which
follows the two SBPSO algorithms. The convergence curves
of the six algorithms over 3000 iterations are shown in Fig.
5a. As can be seen from the figures, the convergence trends
are also similar to that of 1000 iterations since most of
the algorithms can adapt with different maximum numbers
of iterations thanks to their dynamic mechanisms. A typical
example is Up BPSO which always sharply improves its
solutions only in the last 10% iterations, regardless of the
maximum number of iterations.

We also performed additional experiments on larger num-
bers of iterations to examine the search ability of SBPSO.
The convergence curves of 6000, 12000, and 24000 iterations
are shown in Figs. 5b, 5c, and 5d, respectively. As can be
seen from the figures, on UCI500, given 3000 iterations,
the three BPSO algorithms can find out as good solutions
as the ones obtained by SBPSO algorithms. On WCI1000
and SCI2000 which have more items than UCI500, Quantum
BPSO and Time Varying BPSO need 24000 iterations to
achieve comparative solutions in comparison with SBPSO.
On ISCI5000 which has the largest number of items, given
24000 iterations, Time Varying BPSO, the most promising
BPSO benchmark algorithm, starts converging at the 20000th

iteration, but its solution is still much worse than that of
SBPSO algorithms. The results show that the new velocity
and momentum concepts assist BPSO to locate optimal or
near-optimal solutions quickly.

In comparison between the two versions of SBPSO, with
enough iterations static SBPSO is able to achieve as good
results as dynamic SBPSO. For example, Fig. 5b shows that
Static SBPSO produces a similar solution to dynamic SBPSO
on SCI2000 when the maximum number of iterations is 6000.
On a larger dataset, such as ISCI5000, the static one needs at
least 12000 iterations to reach the dynamic one. An interesting
point is that if more iterations are given, it is possible that
static SBPSO can achieve even better solutions than dynamic
SBPSO, which can be seen on ISCI5000 with 24000 iterations.
The probable reason is that when both algorithms reach the
same near-optimal solution, static SBPSO has more explo-
ration than dynamic SBPSO, which gives SBPSO more chance
to explore even better solutions. However, many real-world
applications have computationally intensive evaluations so that

large numbers of iterations are infeasible, and dynamic SBPSO
is more useful and more effective.

IV. FURTHER COMPARISONS WITH OTHER BPSO
ALGORITHMS

In this section, the proposed SBPSO algorithms are com-
pared with three well-known modified BPSO algorithms.
The first algorithm is called Modified BPSO (MBPSO) [1].
The idea is to improve the exploration ability by replacing
the sigmoid function in standard BPSO with (xid + vid +
Vmax)/(1 + 2Vmax) which is also in the range [0,1]. The
second algorithm [2] introduces two kinds of positions in
BPSO: genotype and phenotype positions. In this algorithm
(which we called PGBPSO), genotype position is a continuous
vector that is updated the same as in standard continuous PSO.
The phenotype position is a binary vector that is obtained by
applying a sigmoid function on the genotype position. In the
third algorithm (IBPSO [3]), the standard velocity is replaced
by a new term called speed. For each particle, its speed is
based on the number of bits that are different between the
particle and its pbest, gbest. In all cases, the momentum is
unmodified from standard PSO. The comparisons on the GK
and high-dimensional datasets are shown in Tables V and VI,
respectively.

As can be seen from the tables, on all datasets, the pro-
posed SBPSO algorithms achieve better profit than the three
benchmark algorithms. The main reason is that both MBPSO
and PGBPSO search in continuous search spaces. The binary
position is then obtained by converting from a continuous
vector to a binary vector. In contrast, the proposed SBPSO
algorithms work directly on a binary search space where
the position is a binary vector. Among the three benchmark
algorithms, only IBPSO works directly on binary search spaces
by introducing the speed concept. However, the speed is a
scalar unit used to generate the probability of being 1 for all
entries of each particle. In other words, all the entries have
the same probability of being 1 or 0. In SBPSO, each entry of
a particle can have its flipping probability determined directly
by the particle’s velocity — a flipping probability vector that
determines whether a position entry is flipped or not. The
momentum is also re-defined to be how much the position
entry wants to stick with its current value. Thus, in SBPSO,
position, velocity and momentum are defined in a coherent
way which works directly on the binary search space.

We also compare the proposed SBPSO algorithms with the
standard BPSO algorithm by using convergence curves shown
in Fig. 6. As can be seen from the figure, SBPSO and standard
BPSO have quite similar shapes in the convergence curves,
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(a) Convergence curves (3000 iterations).
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(b) Convergence curves (6000 iterations).
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(c) Convergence curves (12000 iterations).
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(d) Convergence curves (24000 iterations).

Fig. 5: Convergence curves of different maximum numbers of iterations.
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TABLE IV: Results on high-dimensional datasets with 3000 iterations

Dataset n NMBDE Quantum Up TV Stat Dyn
UCI500 500 1.982E5 ± 6.3E1 1.975E5 ± 2.2E2 1.952E5 ± 8.6E2 1.978E5 ± 2.4E2 1.983E5 ± 7.0E1 1.983E5 ± 7.5E1
UCI1000 1000 3.651E5 ± 1.3E3 3.926E5 ± 1.2E3 3.828E5 ± 2.4E3 4.015E5 ± 7.7E2 4.046E5 ± 1.8E2 4.045E5 ± 2.1E2
UCI2000 2000 6.507E5 ± 2.3E3 7.531E5 ± 5.7E3 7.239E5 ± 5.9E3 8.006E5 ± 1.6E3 8.174E5 ± 7.4E2 8.177E5 ± 4.9E2
UCI5000 5000 1.449E6 ± 4.7E3 1.689E6 ± 1.6E4 1.615E6 ± 1.2E4 1.851E6 ± 6.7E3 1.974E6 ± 2.3E3 1.979E6 ± 2.3E3
ISCI500 500 1.253E5 ± 1.1E2 1.286E5 ± 1.1E2 1.273E5 ± 2.0E2 1.286E5 ± 1.3E2 1.290E5 ± 9.2E1 1.290E5 ± 9.3E1
ISCI1000 1000 2.549E5 ± 2.0E2 2.621E5 ± 3.6E2 2.590E5 ± 4.4E2 2.630E5 ± 3.8E2 2.644E5 ± 1.9E2 2.645E5 ± 2.1E2
ISCI2000 2000 5.139E5 ± 3.4E2 5.258E5 ± 5.0E2 5.206E5 ± 5.2E2 5.290E5 ± 4.3E2 5.325E5 ± 4.1E2 5.329E5 ± 3.8E2
ISCI5000 5000 1.270E6 ± 4.1E2 1.291E6 ± 1.1E3 1.282E6 ± 9.3E2 1.298E6 ± 1.2E3 1.306E6 ± 9.1E2 1.307E6 ± 8.8E2
SCI500 500 1.561E5 ± 1.7E2 1.597E5 ± 1.4E2 1.583E5 ± 3.3E2 1.596E5 ± 2.1E2 1.601E5 ± 1.2E2 1.601E5 ± 1.0E2
SCI1000 1000 3.172E5 ± 2.3E2 3.245E5 ± 3.3E2 3.216E5 ± 3.4E2 3.256E5 ± 3.7E2 3.269E5 ± 2.1E2 3.270E5 ± 1.5E2
SCI2000 2000 6.164E5 ± 3.9E2 6.302E5 ± 5.8E2 6.242E5 ± 6.1E2 6.335E5 ± 6.6E2 6.376E5 ± 4.3E2 6.379E5 ± 4.0E2
SCI5000 5000 1.520E6 ± 5.6E2 1.544E6 ± 1.0E3 1.533E6 ± 1.4E3 1.552E6 ± 1.2E3 1.561E6 ± 1.1E3 1.562E6 ± 1.0E3
WCI500 500 1.337E5 ± 1.8E2 1.381E5 ± 1.4E2 1.365E5 ± 2.6E2 1.382E5 ± 1.0E2 1.387E5 ± 5.1E1 1.387E5 ± 7.9E1
WCI1000 1000 2.710E5 ± 3.1E2 2.808E5 ± 4.2E2 2.768E5 ± 4.5E2 2.828E5 ± 3.3E2 2.846E5 ± 1.3E2 2.848E5 ± 2.0E2
WCI2000 2000 5.221E5 ± 3.8E2 5.393E5 ± 6.9E2 5.317E5 ± 9.4E2 5.451E5 ± 8.2E2 5.513E5 ± 5.0E2 5.519E5 ± 4.8E2
WCI5000 5000 1.281E6 ± 5.9E2 1.311E6 ± 1.3E3 1.298E6 ± 1.5E3 1.323E6 ± 1.7E3 1.339E6 ± 1.0E3 1.341E6 ± 9.5E2

TABLE V: Comparisons with modified BPSO on the GK library.

Dataset n m MBPSO PGBPSO IBPSO Stat Dyn
GK01 100 15 3.682E3 ± 1.6E1 3.600E3 ± 8.5E0 3.528E3 ± 2.2E1 3.714E3 ± 1.1E1 3.723E3 ± 1.1E1
GK02 100 25 3.870E3 ± 1.6E1 3.796E3 ± 7.6E0 3.718E3 ± 1.7E1 3.901E3 ± 1.2E1 3.910E3 ± 1.3E1
GK03 150 25 5.531E3 ± 2.0E1 5.436E3 ± 9.6E0 5.361E3 ± 2.5E1 5.558E3 ± 1.2E1 5.564E3 ± 9.7E0
GK04 150 50 5.639E3 ± 1.5E1 5.562E3 ± 1.1E1 5.487E3 ± 2.3E1 5.662E3 ± 1.5E1 5.673E3 ± 1.5E1
GK05 200 25 7.372E3 ± 2.3E1 7.255E3 ± 1.0E1 7.164E3 ± 2.6E1 7.413E3 ± 2.1E1 7.423E3 ± 2.1E1
GK06 200 50 7.508E3 ± 2.3E1 7.420E3 ± 9.6E0 7.334E3 ± 3.3E1 7.534E3 ± 1.4E1 7.543E3 ± 1.7E1
GK07 500 25 1.869E4 ± 3.9E1 1.844E4 ± 2.1E1 1.830E4 ± 5.5E1 1.875E4 ± 3.6E1 1.879E4 ± 3.4E1
GK08 500 50 1.839E4 ± 3.0E1 1.821E4 ± 1.6E1 1.809E4 ± 3.9E1 1.841E4 ± 3.0E1 1.842E4 ± 2.5E1
GK09 1500 25 5.639E4 ± 8.7E1 5.588E4 ± 4.0E1 5.560E4 ± 7.4E1 5.642E4 ± 7.8E1 5.648E4 ± 7.6E1
GK10 1500 50 5.597E4 ± 6.4E1 5.564E4 ± 3.4E1 5.538E4 ± 7.5E1 5.601E4 ± 6.3E1 5.604E4 ± 5.1E1
GK11 2500 100 9.347E4 ± 4.9E1 9.309E4 ± 4.3E1 9.280E4 ± 8.9E1 9.349E4 ± 5.8E1 9.354E4 ± 5.8E1

TABLE VI: Comparisons with modified BPSO on the high-dimensional library.

Dataset n MBPSO PGBPSO IBPSO Stat Dyn
UCI500 500 1.925E5 ± 1.1E3 1.353E5 ± 1.0E3 1.295E5 ± 1.9E3 1.978E5 ± 2.0E2 1.979E5 ± 1.8E2
UCI1000 1000 3.813E5 ± 1.9E3 2.713E5 ± 1.5E3 2.630E5 ± 2.4E3 4.004E5 ± 5.5E2 4.014E5 ± 5.6E2
UCI2000 2000 7.394E5 ± 6.3E3 5.334E5 ± 2.7E3 5.197E5 ± 2.8E3 7.997E5 ± 1.5E3 8.030E5 ± 1.4E3
UCI5000 5000 1.687E6 ± 1.3E4 1.284E6 ± 3.3E3 1.264E6 ± 7.2E3 1.854E6 ± 3.9E3 1.864E6 ± 5.6E3
ISCI500 500 1.262E5 ± 3.1E2 1.217E5 ± 1.6E2 1.207E5 ± 2.8E2 1.280E5 ± 1.9E2 1.283E5 ± 1.5E2
ISCI1000 1000 2.573E5 ± 6.7E2 2.500E5 ± 2.8E2 2.486E5 ± 6.0E2 2.610E5 ± 4.2E2 2.616E5 ± 3.4E2
ISCI2000 2000 5.185E5 ± 1.0E3 5.072E5 ± 2.8E2 5.052E5 ± 5.0E2 5.243E5 ± 5.9E2 5.248E5 ± 7.2E2
ISCI5000 5000 1.279E6 ± 1.4E3 1.260E6 ± 4.6E2 1.257E6 ± 8.4E2 1.286E6 ± 1.2E3 1.286E6 ± 1.4E3
SCI500 500 1.570E5 ± 3.8E2 1.520E5 ± 2.2E2 1.508E5 ± 4.7E2 1.590E5 ± 2.0E2 1.593E5 ± 2.1E2
SCI1000 1000 3.198E5 ± 6.1E2 3.118E5 ± 2.6E2 3.102E5 ± 4.6E2 3.235E5 ± 3.5E2 3.241E5 ± 3.5E2
SCI2000 2000 6.216E5 ± 1.0E3 6.089E5 ± 4.4E2 6.067E5 ± 7.1E2 6.282E5 ± 5.6E2 6.290E5 ± 4.6E2
SCI5000 5000 1.531E6 ± 1.7E3 1.508E6 ± 5.8E2 1.504E6 ± 1.7E3 1.538E6 ± 1.0E3 1.539E6 ± 1.2E3
WCI500 500 1.349E5 ± 4.6E2 1.285E5 ± 2.7E2 1.273E5 ± 3.8E2 1.376E5 ± 1.8E2 1.379E5 ± 1.5E2
WCI1000 1000 2.747E5 ± 8.2E2 2.639E5 ± 2.5E2 2.621E5 ± 4.9E2 2.803E5 ± 3.3E2 2.810E5 ± 4.4E2
WCI2000 2000 5.299E5 ± 1.3E3 5.121E5 ± 4.3E2 5.095E5 ± 8.0E2 5.387E5 ± 7.1E2 5.400E5 ± 9.1E2
WCI5000 5000 1.295E6 ± 2.3E3 1.265E6 ± 6.2E2 1.261E6 ± 1.1E3 1.307E6 ± 1.2E3 1.308E6 ± 1.3E3

especially on GK datasets, where the candidate solutions
are improved gradually. However, the improvement speed of
standard BPSO is much slower than that of SBPSO algorithms,
which results in a much worse performance of standard BPSO.
The results show that by considering the characteristics of
a binary search space, SBPSO algorithms explore the search
space more effectively and evolve better solutions.

The effect of the dynamic mechanism can be seen by
contrasting the curves of Dynamic and Static SBPSO. The
difference is more visible on the GK datasets. In the beginning,
Static SBPSO has better candidate solutions than Dynamic
SBPSO, mainly because the dynamic one focuses more on
exploration. However, in the later iterations, Dynamic SBPSO
focuses more on exploitation which improves its candidate
solutions significantly resulting in the superiority of Dynamic

SBPSO over Static SBPSO. More analysis is given in Subsec-
tion VI.B of the paper.

REFERENCES

[1] J. C. Bansal and K. Deep, “A modified binary particle swarm optimization
for knapsack problems,” Applied Mathematics and Computation, vol. 218,
no. 22, pp. 11 042–11 061, 2012.

[2] S. Lee, S. Soak, S. Oh, W. Pedrycz, and M. Jeon, “Modified binary
particle swarm optimization,” Progress in Natural Science, vol. 18, no. 9,
pp. 1161–1166, 2008.

[3] M. S. Mohamad, S. Omatu, S. Deris, and M. Yoshioka, “A modified
binary particle swarm optimization for selecting the small subset of
informative genes from gene expression data,” IEEE Transactions on
information Technology in Biomedicine, vol. 15, no. 6, pp. 813–822, 2011.



6

StandardBinary Static Dynamic

3550

3600

3650

3700

0 1000 2000 3000

GK01

5500

5550

5600

5650

5700

0 1000 2000 3000

GK04

18300

18400

18500

18600

18700

18800

18900

0 1000 2000 3000

GK07

93000

93250

93500

0 1000 2000 3000

GK11

140000

160000

180000

200000

0 1000 2000 3000

UCI500

265000

270000

275000

280000

285000

0 1000 2000 3000

WCI1000

610000

620000

630000

0 1000 2000 3000

SCI2000

1260000

1270000

1280000

1290000

1300000

0 1000 2000 3000

ISCI5000

Fig. 6: Convergence curves of SBPSO and standard BPSO algorithms (3000 iterations).


