
1

A New Binary Particle Swarm Optimization
Approach: Momentum and Dynamic Balance

Between Exploration and Exploitation
Bach Hoai Nguyen, Member, IEEE, Bing Xue, Member, IEEE, Peter Andreae,

and Mengjie Zhang, Fellow, IEEE

Abstract—Particle swarm optimization is a heuristic opti-
mization algorithm generally applied to continuous domains.
Binary particle swarm optimization is a form of particle swarm
optimization, applied to binary domains, but uses the concepts
of velocity and momentum from continuous particle swarm
optimization, which leads to its limited performance. In our
previous work, we reformulated momentum as a stickiness
property and velocity as a flipping probability to develop sticky
binary particle swarm optimization. The initial design provides a
good base, but many key factors need to be investigated. In this
work, we propose a new algorithm named dynamic sticky binary
particle swarm optimization by developing a dynamic parameter
control strategy based on an investigation of exploration and
exploitation in binary search spaces. The proposed algorithm is
compared with four state-of-the-art dynamic binary algorithms
on two types of binary problems: knapsack and feature selection.
The experimental results on knapsack datasets show that the
new velocity and momentum assist sticky binary particle swarm
optimization in evolving better solutions than the benchmark
algorithms. On feature selection, the dynamic strategy takes the
advantages of these two newly defined movement concepts to
help the proposed algorithm produce smaller feature subsets with
higher classification performance. This is the first time in binary
particle swarm optimization, the four important concepts, i.e., ve-
locity, momentum, exploration, and exploitation, are investigated
systematically to capture properties of binary search spaces to
evolve better solutions for binary problems.

Index Terms—Binary Particle Swarm Optimization, Feature
Selection, Knapsack, Classification

I. INTRODUCTION

Evolutionary Computation (EC) includes a group of
population-based heuristic approaches, in which individuals
interact with each other to search for optimal or near-optimal
solutions. One such EC algorithm, Particle Swarm Optimiza-
tion (PSO) [1], has been extensively applied to many real-
wold problems [2], [3] because of its simplicity, efficiency
and effectiveness [4]. PSO was inspired by the social behavior
of birds flocking, and was proposed to solve continuous
problems. As an EC algorithm, PSO maintains a set of
particles, which represent candidate solutions. The quality of
each particle is measured by a fitness function. Each particle
has its own position which is usually a numeric vector, in
which each entry corresponds to a decision variable. In order
to explore the search space, particles move around according
to their velocities. Each particle records its personal best
position, called pbest (pb) and its neighbors’ best position,
called gbest (gb). The two bests contribute to the particle’s

velocity, which helps the particle to explore in more promising
regions. Specifically, for a particle, the dth component of its
velocity is updated according to the following equation:

vt+1
d = w×vtd+c1×r1×(pbd−xtd)+c2×r2×(gbd−xtd) (1)

where t means the tth iteration in the whole evolutionary
process, x is the current position, c1 and c2 are acceleration
constants, and r1 and r2 are two random values uniformly
distributed in [0,1]. At each step, the particle’s position is
updated by using Eq. (2).

xt+1
d = xtd + vt+1

d (2)

The original PSO is continuous PSO (CPSO) being applied
and extended to solve many continuous problems [5]. PSO
has also been extended to cope with discrete problems [6].
Binary PSO (BPSO) was originally developed by Kennedy
and Eberhart [7], to solve many combinatorial problems, e.g.
job-shop scheduling [8] and feature selection [9]. In BPSO, the
position is a binary vector, and the velocity is a continuous
vector and is still updated by Eq. (1). But rather than adding
the velocity to the position to get the new position, in BPSO,
the velocity entry is used to determine the probability that the
corresponding position entry takes the value 1, as shown in
the position update equation in Eq. (3).

xt+1
d =

{
1, if rand() ≤ s(vt+1

d)

0, otherwise
(3)

where s(vt+1
d) =

1

1 + e−v
t+1
d

, known as a transfer function.

Velocity plays a major role in the performance of a PSO
algorithm. As shown in Eq. (1), the velocity consists of three
components. The first component is momentum (wvtd) show-
ing the influence of the current direction. Different particles
usually have different momentums, which helps to maintain
the diversity of the swarm, especially when all the particles
share their best experience. Also, when the particle arrives the
best position discovered by the swarm so far, momentum is
the only factor which allows the particle to keep exploring
better solutions. The other two are cognitive component and
social component, which guide the particle toward its own best
experience and neighbors’ best experience.

In CPSO, particles can move smoothly in a direction, so
defining a velocity as a vector of real numbers is meaningful.
However, in a binary search space, a particle moves by

2

flipping its position entries. Such a movement is not correctly
described as a velocity and directly applying the notions
of speed, direction, and momentum to the binary domain
is not valid. In [10], we argued that these concepts were
misleading and being more precise about the nature of the
movement led to a better formulation in terms of “stickiness”
and a “flipping probability” that gave an algorithm with better
results than standard BPSO. It is not appropriate to apply the
velocity concept of CPSO directly to BPSO as in [7]. This
inappropriate application leads to BPSO’s limited performance
compared with CPSO [11].

It is also important to control the contributions of the three
components of velocity in PSO to balance between exploita-
tion and exploration [12]. The exploration ability corresponds
to a tendency to discover new search regions, while the
exploitation ability corresponds to finding the best solution
within the current region. The balance between exploration and
exploitation relates directly to the inertia weight and the two
acceleration parameters [13], which control the momentum,
cognitive and social components, respectively. In CPSO, a
larger inertia weight, which gives higher velocities, results
in more exploration and a smaller inertia weight guides the
swarm to focus more on exploitation. A control strategy that
starts with a high inertia weight and gradually decreases
it results in more exploration at the beginning and more
exploitation at the end of each run, which has been widely
used in CPSO.

However, the inertia weight in BPSO has an opposite effect,
which is shown in [14] and theoretically proved in [15] (on the
assumption that pbest and gbest are not changed). In contrast
to CPSO, the velocity in BPSO does not directly determine the
new position of a particle. It is used to derive the probability
of the position entry being 1, which makes BPSO’s movement
very different from that of CPSO. Besides, since the movement
to the new position ignores the previous location, one cannot
say the new position is far or close to the previous location.

The velocity, momentum, exploration and exploitation in
BPSO need appropriate formations so that the particles can
move through a binary search space in a meaningful way.
In our previous work [10], new definitions of velocity and
momentum have been defined in a coherent way that allows
BPSO to work directly on a binary search space. We will
continue our previous work to investigate BPSO further and
develop a new BPSO algorithm in which the binary move-
ment is reflected more accurately, and the balance between
exploration and exploitation is better controlled.

A. Goal

The overall goal of this paper is to develop a new BPSO
algorithm, which can consider properties of binary search
spaces to explore the search space more effectively and
produce better solutions for binary problems. To achieve this
goal, the key concepts, which are momentum and velocity,
are revised so that the particles move around the search space
by more effective mechanisms. Also, a dynamic parameter
setting strategy is developed to further enhance the BPSO’s
search ability by considering the trade-off between exploration

and exploitation. The proposed BPSO algorithm is compared
with four well-known and state-of-the-art EC algorithms on
two types of well-known binary problems: knapsack and
feature selection. Specifically, we will investigate the following
objectives:

• Investigate whether applying the two revised concepts can
help BPSO to evolve better item subsets with higher profit
in the knapsack problems;

• Investigate whether the new momentum and velocity can
assist the particles to better explore the large and complex
search space of feature selection, and can result in smaller
feature subsets with higher classification performance;

• Investigate whether the proposed dynamic parameter
setting strategy can balance between exploration and
exploitation to further improve the search ability of BPSO
on both knapsack and feature selection problems; and

• Analyse the effect of the two revised concepts and the
dynamic strategy during the BPSO’s search process.

II. BACKGROUND

A. Related Work on BPSO

Binary PSO (BPSO) has been applied to many real-world
problems. Sarath et al. [16] applied BPSO to generate as-
sociation rules from transactional datasets. The results on a
dataset from an Indian commercial bank showed that apply-
ing BPSO not only provided higher quality rules but also
avoided redundant rules. Taha et al. [17] used BPSO to detect
available frequencies in cognitive radio, which allowed to
utilize system resources. The BPSO-based dynamic allocation
achieved higher detection rates and lower false alarm rates
with different noise ratios. Lin et al. [18] used BPSO to search
for highly profitable item sets instead of frequent item sets in
transactional databases. It was shown that the BPSO based
algorithm was more efficient, more effective and converged
faster than GAs.

In many other works, BPSO has also been modified to
improve its performance. In the original BPSO [7], a sigmoid-
function was used as a transfer function known as an S-
shaped function. In [19], V-shaped transfer functions were
proposed for BPSO. The position updating equation also
considered the previous location. The experimental results
showed that applying V-shaped functions while considering
the previous location improved the performance of BPSO.
However, it was not clear that which modification contributed
more to the improvement. The performance of BPSO on
different datasets heavily depended on the specific transfer
functions, even when they were from the same family (V-
shaped or S-shaped). Hence, it was not an easy task to select
an appropriate transfer function for a particular task or dataset.
Islam et al. [20] proposed a time-varying S-shaped transfer
function for BPSO which aimed to provide a smooth shift from
more exploration to more exploitation during the evolutionary
process. Experimental results showed that the time-varying
transfer function assisted BPSO to achieve better results than
a normalized linear transfer function [21] and a well-known
V-shaped transfer functions [19].

3

Zhang et al. [22] used BPSO for feature selection, which
aimed to improve the performance in spam detection problems.
In this work, a mutation operator was used to increase the
diversity of the swarm and avoid premature convergence. The
experimental results indicated that the proposed algorithm
achieved better results than GAs and the standard PSO al-
gorithm. Yang et al. [23] attempted to allocate workload to
sensors in a network so that the system was more energy-
efficient and the communication volume was reduced. The
BPSO algorithm with a V-shape function, a new updating
equation, and mutation operators was proposed. The BPSO
algorithm outperformed GAs and standard BPSO. However,
the modifications in the two proposed BPSO algorithms still
ignored the previous location. Aiman et al. [24] modified
BPSO to achieve a good state assignment on a finite state
machine, which aimed to minimize the area of sequential
circuits. The authors proposed an updating equation for ve-
locity, which considered the correlation between pbest and
gbest. Although the experimental results showed that the
modified BPSO algorithm was more effective than standard
BPSO and GAs, it was potential that the swarm would be
stuck at local optima when pbest and gbest had the same
position. Zhai et al. [25] improved a BPSO-based instance
selection algorithm by utilizing an immune mechanism. Before
updating the swarm, some particles were modified based on
the numbers of their good neighbors (vaccine value) and
current positions. The experimental results on datasets with
different numbers of instances showed that the immune BPSO
outperformed both standard BPSO and INSIGHT, which was
a deterministic instance selection algorithm, regarding the
classification accuracy and the size of instance subsets. It could
be seen that considering the previous position in BPSO has a
positive effect. However, the proposed algorithm was designed
specifically for instance selection.

In 2016, Liu et al. [15] provided a detailed analysis of the
effect of the inertia weight parameter on the searching ability
of BPSO. Particularly, it was shown that when the two bests
were not changed, a larger inertia weight tended to enhance
the exploration ability, which was opposite to CPSO. Based on
this observation, an incremental strategy for the inertia weight
was defined as follows:

w =

{
w + π(w−w)

ρπ , if π ≤ ρπ
w, if ρπ < π ≤ π

(4)

where π and π represented for the current iteration and the
maximum number of iterations, w and w were the upper and
lower boundaries of w, ρ was a parameter in the interval
[0,1], which was used to determine the number of iterations
to increase w from w to w. Based on the analysis, Liu et
al. [15] proposed a BPSO algorithm named Up BPSO, which
outperformed the standard BPSO algorithm with a constant
and a linearly decreasing inertia weight.

Besides modifying standard BPSO to achieve a better trade-
off between exploration and exploitation, there have been some
studies proposing new metaphors for BPSO. For instance,
Pampara et al. [26] proposed an Angle-modulated BPSO algo-
rithm that essentially used a sine function with four parameters
to generate a real-valued vector. The vector was then converted

to a binary string using 0 as a threshold. The four parameters
were optimized using a standard continuous PSO. Although
the algorithm significantly reduced the number of original
decision variables to only four parameters, it introduced strong
correlations between original decision variables since they
were generated from the same function. Jeong et al. [27]
applied Quantum Computing to propose a Quantum-inspired
BPSO algorithm. The main idea was that the jth entry was
represented by an angle θj . Then sin(θj)

2 was used as a
probability of the corresponding entry being 1. For each
iteration, θj was updated with respect to a rotation angle θ
and the differences between the current position and pbest or
gbest. In the proposed algorithm, the rotating angle θ was also
dynamically updated as follows:

θ = θmax − (θmax − θmin)×
t

T
(5)

where t is the current iteration number, and T is the maximum
number of iterations.

Although many studies have attempted to improve the
performance of BPSO, they are mainly based on continuous
velocity and momentum concepts borrowed from continuous
PSO. Some new metaphors for BPSO have been proposed such
as Quantum BPSO, but they do not consider characteristics of
movements in binary search spaces, i.e., bouncing between
points. To address this problem, we proposed a new velocity
and momentum concept to let binary particles move in a more
meaningful way [10]. The standard velocity was replaced by a
probability vector, which determined the flipping probability
of a position entry. Therefore, there was no need to worry
about the transfer function as in the original BPSO. Following
the new velocity concept, a new momentum was introduced,
which was also known as stickiness property. The main idea
was that, if a bit has just flipped then it will try to stick
with the new value for a while. In the following iterations,
if the bit’s value was not changed, its stickiness property
decayed until the bit was flipped again. Although the proposed
stickiness BPSO (SBPSO) [10] algorithm had good results on
knapsack and feature selection problems, this is still a very
initial work. We have not fully investigated its abilities such as
the parameters of the algorithm are not optimized yet. Also, its
performance has not been compared with recently developed
binary algorithms such as Up BPSO [15], Time-varying BPSO
[20], Quantum BPSO [27]. Besides momentum and velocity,
exploration and exploitation are also two essential properties
in a PSO algorithm, but they have not been defined in a
systematic way with the other new concepts.

B. Knapsack Problems

Knapsack is a traditional binary optimization problem,
which can be described as follows: given a set of n items
and a knapsack; each ith (i = 1 . . . n) item has a positive
profit pi and a number of positive resource consumption
ri1, ri2, . . . , rim corresponding to m resources; the knapsack
has m capacities Cj(j = 1 . . .m) for each resource; the task
is to select an item subset so that the total profit of selected
items is maximized while for all resources the total resource

4

consumption does not exceed the knapsack’s resource capacity.
The problem can be described using the following formula:

max

n∑
i=1

pi ∗ xi,

s.t. :

n∑
i=1

rij ∗ xi ≤ Cj ,∀j ∈ {1, 2, . . . ,m}

xi ∈ 0, 1,∀i ∈ {1, 2, . . . , n}

where the ith item is selected if and only if xi = 1. Knapsack
has been widely used to evaluate many evolutionary algorithms
such as PSO [28], DE [29], GAs [30], and even multi-objective
algorithms [31]. Checking and repairing operators [32], [33]
can be incorporated to avoid infeasible item sets. However,
utilizing such operators may compensate for or hide poor
performance in the underlying BPSO, which makes it difficult
to compare between different BPSO algorithms. Therefore,
this work adopts a penalty function to handle the Knapsack
constraint.

C. Feature Selection

Because of significant advancements in technology, real-
world datasets are getting bigger with a large number of fea-
tures. Due to the “curse of dimensionality”, learning systems
e.g. classification methods, may not work well with these high-
dimensional datasets. The task of classification is to category
instances based on their attribute or feature values. However,
a large feature set usually contains irrelevant or redundant
features, which can hide useful information from other relevant
features [34]. As a result, the classification process requires
a long training time and the performance deteriorates due to
possible overfitting. In order to build a more accurate classifier
in a shorter training time, feature selection is proposed to
remove all irrelevant/redundant features.

However, feature selection is a difficult problem because of
its large search space. Suppose there are n original features,
there are 2n possible feature subsets to consider. In addition,
features can interact with each other, which makes feature
selection even more difficult [35]. Many search techniques
have been applied to solve feature selection problems. An
exhaustive search guarantees to find an optimal feature subset
but it is not practical to perform on a large number of features.
Sequential searches [36] start with an empty (full) feature
set and add (remove) features to (from) the selected features.
However, they are usually trapped at local optima since once a
feature is selected (removed), it can not be removed (selected)
later. Recently, sparse learning based feature selection methods
gain a lot of attention [37]. The idea is to find an optimal
weight vector, which minimizes the fitting error along with
some regularization terms. Because of the sparse regularizer,
some learned weights will be very small, and their correspond-
ing features are discarded. However, these methods usually
require a predefined number of selected features. Among
sparse learning based feature selection methods, the robust
feature selection method (RFS) [38] is one of the most popular
ones. Instead of using the `2-norm based loss function, `2,1-
norm is applied to avoid outliers in data points. In addition,

`2,1 is also cheaper to calculate. Experimental results on six
datasets show the better performance of RFS over several
popular traditional feature selection approaches.

EC techniques have been applied widely because of its
global search ability. A comprehensive survey about EC-
based feature selection algorithms has been done by Xue et
al. [35]. In comparison with other EC techniques, PSO is
preferred since it is efficient, has fewer parameters and a
natural representation for feature selection [39].

III. PROPOSED ALGORITHM

This section presents the new momentum and velocity
concepts for BPSO by using the notion of stickiness. It then
defines exploration and exploitation capabilities to cope with
the movement strategy of the particles. Based on definitions of
the two capabilities, a dynamic strategy is developed to control
the trade-off between these capabilities better.

A. Sticky BPSO (SBPSO)

In standard BPSO, the new position is determined without
considering the previous location, which can be seen in Eq.
(3). The particles do not move smoothly as in CPSO. Particles
change their positions by flipping position entries either from
0 to 1 or from 1 to 0. This kind of probabilistic binary change
cannot usefully be described as a continuous velocity. Rather
it is better to describe the change in terms of the probability of
flipping. Therefore, instead of using a velocity vector we use
a flipping vector p , in which each entry shows the probability
of flipping the corresponding position entry.

To guide particles toward promising regions, the PSO ve-
locity vector consists of three main components: momentum,
cognitive and social factors. All three factors need modification
for the binary domain. Momentum is a fundamental continuous
concept (like velocity) and needs to be replaced by a more
appropriate concept that still captures the role of momentum
in CPSO. In CPSO, the momentum corresponds to a tendency
to keep moving in the current direction. However, in BPSO,
instead of moving in a direction, a particle’s movement is
described as whether its entries are flipped or not. Therefore,
in BPSO, we replace the momentum by a measure of the
tendency to stick with the current position, which we call
stickiness(stk). The idea is that a high stickiness for an
entry means that the particle should stick with the value for
a while so that the particle can explore around the entry’s
value, rather than switching to a different region of the space.
If the stickiness of an entry is set to a high value and never
changes, the particle could get stuck in an unproductive region.
Therefore, we need a strategy to control the stickiness. We
currently set the stickiness of an entry to be high when the
entry is flipped and then decay the stickiness over time until it
is 0 or the entry flips again. We use a linear decay that reduces
the stickiness from 1 to 0 over a fixed number of steps (ustkS).
The stickiness property of the dth bit is updated using:

stkt+1
d =

1, if the bit is just flipped

max(stktd −
1

ustkS
, 0), otherwise

(6)

5

where t means the tth iteration. It can be seen that if one bit is
not flipped for ustkS iterations, its stickiness value stkd will
become 0, which significantly increases the probability that
this bit will be flipped (un-stick) in the next iteration.

The cognitive and social factors (based on pbest and gbest)
are still important – they guide the particle towards the regions
containing pbest and gbest. However, the acceleration factors
(and the random multipliers) are only appropriate in the
continuous domain. For the binary domain, we need important
weights that increase the flipping probability when the current
position is different from the pbest and gbest. Using the
stickiness property in place of the momentum factor and the
modified cognitive and social factors, the flipping probability
of a particle’s dth position entry is given in Eq. (7).

pd = is ∗ (1− stkd) + ip ∗ |pbd − xd|+ ig ∗ |gbd − xd| (7)

where is is the importance of the stickiness factor, and
ip, ig are the importance of the cognitive and social factors,
respectively. As shown in Eq .(7), if gbest and pbest are not
changed, the smaller the stickiness the more likely the dth

bit will be flipped, which gives a high flipping probability to
the bit that is not changed for a large number of iterations.

According to the flipping probability vector, the new posi-
tion is determined by Eq. (8), which does consider the previous
location to determine the new position.

xt+1
d =

{
1− xtd , if rand() < pd

xtd , otherwise
(8)

B. Exploration and Exploitation in SBPSO

In CPSO, a velocity shows how far a particle is going
to move from the current position to the new position. A
large velocity facilities exploration while a small one leads
to more exploitation. In a binary search space, Hamming
distance can be used to measure the distance between two
binary solutions, which is the number of bits that the two
solutions are different. If a large number of bits are mutated,
the particle is exploring the solution. On the other hand, a few
bits being flipped means the particle exploits the space around
the current position. However, this is not clearly reflected in the
standard BPSO algorithm since the updating equation ignores
the previous position. By contrast, the difference between
the new position and previous position is naturally shown
by the flipping operation in SBPSO. As can be seen in Eq.
(8), pd shows the probability of flipping the dth position
entry, which means the larger pd, the more likely the entry
is flipped. Therefore, more bits to be flipped results in the
particle towards exploration and a smaller probability vector
lets the particle focus more on exploitation. Based on the
defined exploration and exploitation concepts in SBPSO, a
dynamic strategy is proposed in the next section to balance
between the two abilities in SBPSO.

C. Dynamic Strategy

As can be seen from Eq. (6) and Eq. (7), the flipping prob-
ability is affected by four main parameters in which is, ip, ig
and ustkS. During the evolutionary process, there might be

four possible relationships between a current position’s bit and
the corresponding bits in pbest and gbest, in particularly:

pd =


is ∗ (1− stkd) if xd = pbd = gbd

is ∗ (1− stkd) + ig if xd = pbd 6= gbd

is ∗ (1− stkd) + ip if xd = gbd 6= pbd

is ∗ (1− stkd) + ip + ig if xd 6= pbd = gbd

(9)

Since Eq. (9) represents the flipping probability of a single
bit, it is not possible to state exactly whether a case happens
at the beginning, the middle or at the end of the evolutionary
process. However, it is more likely that pbd 6= gbd when the
searching process has just started and pbd = gbd at the end
of the evolutionary process when the swarm converges. The
largest value of pd is (is + ip + ig) when a bit is different
from the bit’s value in both pbest and gbest for a number of
iterations without any improvement. Therefore, (is + ip + ig)
is set to 1, which ensures the bit is flipped to match the values
of pbest and gbest. Suppose that α is the ratio between ip and
ig , i.e., α = ip/ig . ip and ig can be expressed as bellows:

ip = α× 1− is
α+ 1

, ig =
1− is
α+ 1

(10)

By substituting Eq. (10) to Eq. (9), Eq. (9) can be rewritten
as belows:

pd =


is × (1− stkd) if xd = pbd = gbd

is × (1− stkd − 1
α+1) +

1
α+1 if xd = pbd 6= gbd

is × (1− stkd − α
α+1) +

α
α+1 if xd = gbd 6= pbd

1− is ∗ stkd if xd 6= pbd = gbd
(11)

where stkd is calculated based on ustkS using Eq. (6).
As can be seen in Eq. (11), for a given α value, the flipping

probability now mainly depends on two parameters is and
ustkS. For a specific value of is, a smaller ustkS results in a
larger pd, more exploration, while a larger ustkS guides the
swarm towards exploitation because the flipping probability is
smaller. On the other hand, suppose that ustkS is not changed,
except for the case (xd 6= pbd = gbd), decreasing is makes
pd smaller, which guides the swarm to exploit more. A static
setting for is and ustkS might just encourage either good
exploration or exploitation during the evolutionary process.
Therefore, a dynamic setting mechanism for is and ustkS
is proposed to allow the search process to change gradually
from exploration to exploitation. Particularly, in the proposed
mechanism, is is linearly decreased and ustkS is linearly
increased with respect to the number of iterations, which can
be seen in Eq. (12).

ustkSt = ustkSL +
t

T
∗ (ustkSU − ustkSL)

its = iUs −
t

T
∗ (iUs − iLs) (12)

where t stands for the tth iteration, T is the maximum number
of iterations, ustkSU and ustkSL stand for the upper bound
and the lower bound of ustkS, iUs and iLs are the upper bound
and the lower bound of is.

The dynamic strategy is applied to propose a new SBPSO
algorithm, called Dynamic SBPSO, which is shown in Fig. 1.

6

Fig. 1: Dynamic SBPSO Overview.

The standard SBSPO without the dynamic mechanism is called
Static SBPSO. The difference between Static and Dynamic
SBPSO is the green block, which updates the three important
weights.

IV. EXPERIMENT DESIGN

In this work, we perform three different experiments. The
first experiment is to select a good setting for three parameters
of the proposed SBPSO, i.e., is, α and ustkS, which is
conducted only on some selected Knapsack datasets. Note that
the first experiment does not aim to find a perfect parameter
setting working on all problems. The aim is to have a good
enough setting for SBPSO so that its comparisons with other
well-known benchmark algorithms are relatively fair.

The second experiment is to compare Static and Dynamic
SBPSO with four benchmark algorithms on all Knapsack
datasets from three different Knapsack benchmark sets with
varying difficulties. The four benchmark algorithms include
three state-of-the-art BPSO algorithms, i.e., Quantum BPSO
[27], Up BPSO [15], Time Varying BPSO [20], and a recently
proposed Novel Modification Binary Differential Evolution
(NMBDE) [40]. They have good theoretical analysis and
outperform other standard binary algorithms such as GAs,
binary DE [41], BPSO [7] that are not shown to reduce space.
It should be noted that all the four benchmark algorithms have
dynamic parameter settings to balance between exploration
and exploitation.

The third experiment is conducted to compare the two
versions of SBPSO with the four benchmark algorithms on
feature selection that is more challenging than Knapsack due to
its computationally intensive fitness function and the complex
interactions between features.

A. Knapsack

In this work, three well-known Knapsack benchmark sets
are used. The first one is SAC-94 [42] – a standard Knapsack
library. SAC-94 contains six cases, called hp, pb, pet, sento,
weing, and weish with n ranging from 10 to 105 and m ranging
from 2 to 30. Each case has a number of datasets. The second
benchmark set was provided by Glover and Kochenberger
[43], named as “GK”, which contains 11 datasets with much
larger n (from 100 to 2500) and m (from 15 to 1500).
The last benchmark set contains a large number of items
(up to 5000) with complicated relationships between profits
and resource consumptions of the items [44]. There are four
relationship types: uncorrelated instances (UCI), weakly cor-
related instances (WCI), strongly correlated instances (SCI),
and inversely strongly correlated instances (ISCI).

On the knapsack problems, each algorithm is run 30 in-
dependent times, and each run contains 1000 iterations. The

TABLE I: Feature selection datasets.

Dataset #Features #Classes #Instances
Wine 13 3 178
Australian 14 2 178
Zoo 17 7 101
Vehicle 18 4 846
German 24 2 1000
WBCD 30 2 569
Ionosphere 34 2 351
Sonar 60 2 208
Movementlibras 90 15 360
Hillvalley 100 2 606
Musk1 166 2 476
Arrhythmia 279 16 452
Madelon 500 2 4400
Multiple Features 649 10 2000

population size is equal to the number of items, but it is
bounded by 100 to avoid intensive computation costs.

Regarding the representation, each position entry corre-
sponds to one item, which means that a particle’s length is
the total number of items. The position entry is 1 or 0, which
shows that the corresponding item is selected or discarded.
The fitness function from [45] is used, which ensures that an
infeasible solution always has a negative fitness value and a
feasible solution always has a positive fitness value. The fitness
function can be expressed as follows:

fitnessKS = profit− o× s× (maxProfit+ 1) (13)

where profit =
∑n
i=1 pi ∗xi – total profits of selected items,

maxProfit = maxni=1 pi – the largest profit of any of the
items, o – the number of overfilled knapsack resources, s –
the number of selected items.

B. Feature Selection

The six algorithms are compared on 15 feature selections
datasets chosen from the UCI machine learning repository
[46]. The datasets are different in the numbers of features,
classes and instances, which can be seen in Table I. For each
dataset, each algorithm is run 30 independent times, and each
run contains 100 iterations. The swarm size is set to the
number of features, and it is bounded by 100 [10].

The representation of the PSO algorithms for feature selec-
tion is the same as the representation for knapsack, in which
each position corresponds to one original feature and indicates
whether the feature is selected or not.

In feature selection, there are two main objectives, which are
to maximize the classification performance and to minimize
the number of selected features. The two objectives can be
combined to form a fitness function as below:

fitnessFS = γ ∗ ErrorRate+ (1− γ) ∗ #selected
#all

(14)

where ErrorRate is the classification error of the selected
features, #selected and #all represent the number of selected
features and the total number of original features, respectively.
γ is used to control the contribution of the two objectives.
Since the classification performance is preferred over the
number of selected features, γ is usually set to 0.9. The task
is to find a feature subset to minimize the fitness function
given in Eq. (14). In this work, KNN is used to calculate the
classification error in Eq. (14). K is set as 5 to ensure that KNN
can avoid noisy data while still maintaining its efficiency [47].

7

V. PARAMETER STUDY

As shown in Eq. (11), there are three important parameters:
is is the importance of the stickiness property, α controls the
contribution of pbest and gbest, and ustkS defines the number
of steps or iterations to reduce stk from 1 to 0. This section
studies the effect of the three parameters using six Knapsack
datasets selected from the three different Knapsack benchmark
sets (two for each). The six datasets are Weing1, Weish15,
GK01, GK05, SCI500, and ISCI1000.

In case xd = pbd = gbd, the maximum flipping probability
of the dth entry is is, i.e., the first case in Eq. (11), which
shows a relationship between is and the number of bits being
flipped. Therefore, we examine 11 values of is: 0/n, 1/n,
2/n,...,10/n, which corresponds to the 11 different numbers
of bits possibly flipped, ranging from 0 to 10.

For alpha = ip/ig , we examine three values: 0.5, 1.0, and
2.0 representing three cases: pbest contributes more, pbest and
gbest have the same contribution, and gbest contributes more.
ustkS represents the number of iterations that a particle

searches around a position. Given a large number of iterations,
it is reasonable to give the particle more time to search
around the position. Therefore, ustkS should be based on the
maximum number of iterations, T . Particularly, we examine
ten different values of ustkS, which are 1×T/100, 2×T/100,
3× T/100,..., 10× T/100.

In summary, we examine the combination of 11 values for
is, 3 values for α, and 10 values for ustkS, which forms 330
different settings for (is, α, ustkS). The maximum number of
iterations, T , is set to 1000. Each setting is run ten independent
times on each dataset. On a given dataset, each value of a
parameter has an average profit calculated by averaging the
profits obtained by all the settings given the parameter value.
For example, the average profit of is = 2/n is the average of
profits obtained by all settings (is = 2/n, α, ustkS) with all
possible values of α and ustkS.

The average profit values obtained by each setting of is
on Weing1, GK05, and SCI500 are shown in Fig. 2. Similar
patterns are obtained on the other three datasets. The results
on all the six datasets are shown in Section II, Supplementary
Material. It can be seen that the average profits are stable when
is varies between 2/n and 10/n. An interesting pattern is that
when the number of items increases, the most stable setting of
is is smaller. The pattern indicates that it would be better for
a particle to follow the best positions (more contribution for
pbest and gbest) when the search space is large and complex.
From the results, the recommended value of is is 4/n, which
is stable for both small and large datasets.

Fig. 3 illustrates the profit values obtained by three different
settings of α. It can be seen that on most datasets, there is
no significant difference between the three values. However,
α = 2.0 usually gives slightly better profits than other α
values. The pattern illustrates that it would be better to allow
pbest contributes more than gbest so that the population can
maintain its diversity.

Fig. 4 shows the results of different values of ustkS. It
can be seen that when the number of items increases, the
best setting of ustkS also increases. The pattern indicates

ave max min

●

●

●
● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●
●

● ●

● ●

●

● ● ●

0 1 2 3 4 5 6 7 8 9 10

Weing1

●

●

●
● ● ● ●

● ● ● ●
●

● ● ●
●

●

● ●
●

● ●

●

● ●

●

●
● ●

●

●

●

●

0 1 2 3 4 5 6 7 8 9 10

GK05

●

●

●
● ● ● ● ● ● ● ●

●

●
● ● ● ● ●

● ● ● ●

●

●

●

● ●
●

● ● ●
●

●

0 1 2 3 4 5 6 7 8 9 10

SCI500

Fig. 2: Average profit values of is. (red – Average Profits,
blue – Maximum Profits, green – Minimum Profits).

●

●

●

● ● ●

●

●
●

0.5 1 2

Weing1

●
●

●

● ●
●

●

●

●

0.5 1 2

GK05

●
● ●

● ● ●

●

●

●

0.5 1 2

SCI500

Fig. 3: Average profit values of α.

● ●
● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

10 20 30 40 50 60 70 80 90 100

Weing1

● ● ● ● ● ● ● ● ● ●

● ● ●
●

● ● ●
● ● ●

● ● ● ● ● ● ● ● ● ●

10 20 30 40 50 60 70 80 90 100

GK05

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

10 20 30 40 50 60 70 80 90 100

SCI500

Fig. 4: Average profit values of ustkS.

that when the search space is large and complex, it would
be better to search around promising search regions longer
than to switch to other regions quickly. However, there is no
significant difference between the different settings of ustkS.
We recommend setting ustkS to 8×T /100, which achieves
the stable results on both small and large datasets.

The above parameter study gives a reasonable setting
for Static SBPSO: (is = 4/n, α = 2.0, ustkS = 8 ×
T/100). From the obtained pattern, the parameters of Dynamic
SBPSO are set as: iLs = 0/n, iUs = 10/n, ustkSL =
1 × T/100, ustkSU = 10 × T/100 with an expectation that
Dynamic SBPSO can cope well with both small and large
datasets. This parameter study aims to have a generally good
setting for SBPSO which works well not only on Knapsack
but also on other binary optimization problems. Table II shows
the parameter settings for both Static and Dynamic SBPSO.

VI. RESULTS ON KNAPSACK DATASETS

This section presents the experimental results of the six
algorithms on three Knapsack benchmark sets.

A. Profits

The SAC-94 benchmark set contains six different cases.
Each case has a number of different datasets. Since the datasets
have known optimal solutions, we compute the ratio between
the number of times an algorithm evolves the optimal solutions
and 30 – the total number of independent runs. The ratio
is called a hit rate. Table III shows the average hit rates of
each SAC-94 case. In the table, the best average hit rates are

8

TABLE II: Settings for two SBPSO versions:
ig = (1− is)/3, ip = 2× ig , n – number of decision

variables, T – maximum number of iterations.

Algorithm is ustkS
Static 4/n 8× T/100
Dynamic 0/n− 10/n 1× T/100− 8× T/100

TABLE III: Hit rates on SAC-94 datasets. The top and
second-best rates are marked in bold and underlined,

respectively. #D is the number of datasets in each case.

Case #D NMBDE Quantum Up TimeVarying Stat Dyn
hp 2 0.12 0.03 0.20 0.27 0.12 0.40
pb 6 0.17 0.07 0.19 0.28 0.11 0.29
pet 6 0.46 0.29 0.61 0.62 0.46 0.68
sento 2 0.65 0.10 0.07 0.18 0.08 0.33
weing 8 0.15 0.18 0.47 0.53 0.24 0.52
weish 30 0.73 0.46 0.40 0.52 0.53 0.76

marked in bold, and the second-best ones are underlined. It
can be seen that among the six algorithms, Dynamic SBPSO
achieves the highest hit rates on four out of the six cases.
On the other two cases, Dynamic SBPSO is ranked as the
second-best algorithm. Among the four benchmark algorithms,
Time Varying BPSO is the most promising one, but its
results are limited in comparison with Dynamic SBPSO. Time
Varying BPSO achieves the best hit rate on only one case
and the second-best hit rate on the four cases. Although Static
SBPSO does not produce as good results as Dynamic SBPSO,
its performance is stable across different cases of SAC-94.
Particularly, Static SBPSO is ranked as the third/fourth best
algorithm on four out of the six cases, and its hit rates are not
the worst one in all the cases. Meanwhile, NMBDE, Quantum
BPSO, Up BPSO obtain the worst performance on at least one
case even though their parameters are dynamically controlled.

Although the two versions of SBPSO, especially the dy-
namic one, produce promising results on the six SAC-94 cases,
SAC-94 is a relatively small Knapsack benchmark. Table IV
presents the average profits obtained by the six algorithms on
GK datasets that are larger and more complicated than SAC-94
datasets. Once more, Dynamic SBPSO is the best algorithm
which produces the best profits on seven out of the eleven
datasets and achieves the second-best result on the other four
datasets. Time Varying BPSO can be considered the second-
best algorithm since it produces the best profits on four GK
datasets. Following Dynamic SBPSO and Time Varying, Static
SBPSO is ranked as the second/third-best algorithm on nine
out of the eleven datasets. The results show that Static SBPSO
copes well with large and complex search spaces.

In contrast, NMBDE performs poorly on GK datasets. It
results in the worst profit on all GK datasets. Among PSO-
based algorithms, Up BPSO is the worst one while Quantum
BPSO is slightly better than Up BPSO. The possible reason
is that both Up and Quantum BPSO updates either the inertia
weight or the rotation angle (similar to the inertia weight),
which indirectly affects the flipping probability. Meanwhile,
Time Varying BPSO and Dynamic SBPSO directly update the
flipping probability via changing either the sigmoid function
or parameters of the flipping probability equation.

The last Knapsack benchmark set is the most complicated
one, which has a larger number of items (up to 5000 items)

than GK datasets. More importantly, these high-dimensional
datasets also have complex interactions between each the profit
and the cost of each item. Table V presents the average
profits obtained by the six algorithms on high-dimensional
Knapsack datasets. The results illustrate the dominance of
two SBPSO versions over the other benchmark algorithms.
Although Static SBPSO does not use any dynamic mechanism
to update its parameters, it still achieves the second-best profits
on all high-dimensional datasets. Dynamic SBPSO completely
dominates all the other algorithms with its best profits on all
high-dimensional datasets. Similar to GK datasets, NMBDE
produces the worst profits on all high-dimensional datasets.
Among the three benchmark BPSO algorithms, Time Varying
BPSO is still the most promising one. It can be seen that on the
large and complex search spaces, SBPSO consistently evolves
good solutions.

Table VI presents the comparisons between two versions of
SBPSO and the other benchmark algorithm on all 79 Knapsack
datasets from the three benchmark sets. The comparison is
under the Wilcoxon significance test with a significance level
of 0.05. As can be seen from the table, except for Time Varying
BPSO, Static SBPSO is significantly better than the other
benchmark algorithms on half of the datasets. These results are
promising since the other algorithms update their parameters
during their evolutionary processes while Static SBPSO uses
a fixed parameter setting. Dynamic SBPSO is even better than
Static SBPSO. Mainly, Dynamic SBPSO is significantly better
than Static SBPSO on 60 out of the 79 datasets, and it is
never significantly worse than Static SBPSO. These results
show that the dynamic mechanism has a positive effect. In
comparison with Quantum and Up BPSO, Dynamic SBPSO
is significantly better than the two benchmark algorithms on
most datasets. Similarly, Dynamic SBPSO is also significantly
better than Time Varying BPSO on 44 datasets. Only on
two datasets, Dynamic SBPSO is worse than Time Varying
BPSO. An interesting fact is that although Dynamic SBPSO
significantly outperforms NMBDE on 52 datasets, NMBDE
can outperform Dynamic SBPSO on 12 datasets. All the 12
datasets are from the SAC-94 benchmark set, which means
that NMBDE works quite well on small datasets but it does
not scale well when the datasets are larger. On the knapsack
problems, the two SBPSO algorithms also outperform three
well-known modified BPSO algorithms: MBPSO [48], IBPSO
[49], and PGBPSO (named by us) [50]. More details can be
seen in Section IV of the supplementary material.

B. Further analysis of exploitation/exploration

To examine the search ability of the six algorithms, their
convergence curves are recorded and shown in Fig. 5. The
convergence curve is obtained by averaging the best fitness
value achieved by the population in each iteration over the 30
independent runs. For example, if the number of iterations is
100, the evolutionary process has 100 average values.

As can be seen in Fig. 5, on the small datasets such as
Pb1, the six algorithms have quite similar patterns. However,
Quantum BPSO and Static SBPSO converge earlier and result
in worse profits than other algorithms. On datasets with larger

9

TABLE IV: Average profits of the six algorithms on GK datasets.

Dataset n m NMBDE Quantum Up TimeVarying Stat Dyn
GK01 100 15 3.655E3 ± 8.3E0 3.711E3 ± 1.6E1 3.696E3 ± 1.2E1 3.713E3 ± 1.2E1 3.714E3 ± 1.1E1 3.723E3 ± 1.1E1
GK02 100 25 3.842E3 ± 1.1E1 3.902E3 ± 1.3E1 3.882E3 ± 1.4E1 3.898E3 ± 1.2E1 3.901E3 ± 1.2E1 3.910E3 ± 1.3E1
GK03 150 25 5.484E3 ± 1.0E1 5.556E3 ± 1.4E1 5.527E3 ± 1.5E1 5.559E3 ± 1.4E1 5.558E3 ± 1.2E1 5.564E3 ± 9.7E0
GK04 150 50 5.601E3 ± 8.9E0 5.667E3 ± 2.1E1 5.630E3 ± 1.4E1 5.665E3 ± 1.4E1 5.662E3 ± 1.5E1 5.673E3 ± 1.5E1
GK05 200 25 7.314E3 ± 1.2E1 7.411E3 ± 1.7E1 7.372E3 ± 1.9E1 7.411E3 ± 1.6E1 7.413E3 ± 2.1E1 7.423E3 ± 2.1E1
GK06 200 50 7.460E3 ± 8.1E0 7.535E3 ± 1.5E1 7.492E3 ± 1.8E1 7.545E3 ± 1.6E1 7.534E3 ± 1.4E1 7.543E3 ± 1.7E1
GK07 500 25 1.854E4 ± 1.7E1 1.872E4 ± 2.8E1 1.864E4 ± 3.9E1 1.878E4 ± 3.5E1 1.875E4 ± 3.6E1 1.879E4 ± 3.4E1
GK08 500 50 1.827E4 ± 1.4E1 1.838E4 ± 3.6E1 1.832E4 ± 3.5E1 1.844E4 ± 2.3E1 1.841E4 ± 3.0E1 1.842E4 ± 2.5E1
GK09 1500 25 5.605E4 ± 3.7E1 5.634E4 ± 7.0E1 5.622E4 ± 8.1E1 5.652E4 ± 6.0E1 5.642E4 ± 7.8E1 5.648E4 ± 7.6E1
GK10 1500 50 5.573E4 ± 2.5E1 5.593E4 ± 4.9E1 5.583E4 ± 5.3E1 5.606E4 ± 5.3E1 5.601E4 ± 6.3E1 5.604E4 ± 5.1E1
GK11 2500 100 9.318E4 ± 3.9E1 9.335E4 ± 3.8E1 9.328E4 ± 5.9E1 9.353E4 ± 4.7E1 9.349E4 ± 5.8E1 9.354E4 ± 5.8E1

TABLE V: Average profits of the six algorithms on high-dimensional Knapsack datasets.

Dataset n NMBDE Quantum Up TimeVarying Stat Dyn
UCI500 500 1.838E5 ± 8.8E2 1.923E5 ± 9.0E2 1.870E5 ± 1.3E3 1.966E5 ± 5.2E2 1.978E5 ± 2.0E2 1.979E5 ± 1.8E2
UCI1000 1000 3.346E5 ± 2.3E3 3.738E5 ± 2.4E3 3.585E5 ± 3.9E3 3.929E5 ± 1.3E3 4.004E5 ± 5.5E2 4.014E5 ± 5.6E2
UCI2000 2000 6.188E5 ± 2.4E3 7.114E5 ± 7.5E3 6.788E5 ± 4.6E3 7.626E5 ± 4.6E3 7.997E5 ± 1.5E3 8.030E5 ± 1.4E3
UCI5000 5000 1.411E6 ± 5.3E3 1.596E6 ± 1.8E4 1.521E6 ± 1.2E4 1.711E6 ± 7.0E3 1.854E6 ± 3.9E3 1.864E6 ± 5.6E3
ISCI500 500 1.238E5 ± 1.7E2 1.271E5 ± 2.1E2 1.259E5 ± 2.8E2 1.278E5 ± 2.4E2 1.280E5 ± 1.9E2 1.283E5 ± 1.5E2
ISCI1000 1000 2.530E5 ± 2.4E2 2.587E5 ± 4.1E2 2.562E5 ± 3.7E2 2.602E5 ± 4.0E2 2.610E5 ± 4.2E2 2.616E5 ± 3.4E2
ISCI2000 2000 5.114E5 ± 3.5E2 5.201E5 ± 5.7E2 5.162E5 ± 8.2E2 5.224E5 ± 8.0E2 5.243E5 ± 5.9E2 5.248E5 ± 7.2E2
ISCI5000 5000 1.266E6 ± 4.9E2 1.281E6 ± 1.1E3 1.274E6 ± 9.6E2 1.285E6 ± 1.3E3 1.286E6 ± 1.2E3 1.286E6 ± 1.4E3
SCI500 500 1.544E5 ± 2.2E2 1.581E5 ± 2.4E2 1.567E5 ± 3.0E2 1.587E5 ± 2.4E2 1.590E5 ± 2.0E2 1.593E5 ± 2.1E2
SCI1000 1000 3.150E5 ± 2.4E2 3.212E5 ± 3.1E2 3.185E5 ± 4.2E2 3.227E5 ± 4.0E2 3.235E5 ± 3.5E2 3.241E5 ± 3.5E2
SCI2000 2000 6.136E5 ± 3.6E2 6.236E5 ± 7.0E2 6.188E5 ± 8.2E2 6.262E5 ± 8.4E2 6.282E5 ± 5.6E2 6.290E5 ± 4.6E2
SCI5000 5000 1.515E6 ± 6.2E2 1.532E6 ± 1.3E3 1.524E6 ± 9.7E2 1.537E6 ± 1.6E3 1.538E6 ± 1.0E3 1.539E6 ± 1.2E3
WCI500 500 1.317E5 ± 2.6E2 1.362E5 ± 2.6E2 1.345E5 ± 4.4E2 1.371E5 ± 2.7E2 1.376E5 ± 1.8E2 1.379E5 ± 1.5E2
WCI1000 1000 2.684E5 ± 4.2E2 2.764E5 ± 6.4E2 2.728E5 ± 5.5E2 2.786E5 ± 5.5E2 2.803E5 ± 3.3E2 2.810E5 ± 4.4E2
WCI2000 2000 5.184E5 ± 4.5E2 5.310E5 ± 9.2E2 5.257E5 ± 1.1E3 5.354E5 ± 1.1E3 5.387E5 ± 7.1E2 5.400E5 ± 9.1E2
WCI5000 5000 1.275E6 ± 8.4E2 1.296E6 ± 1.3E3 1.287E6 ± 1.4E3 1.303E6 ± 2.5E3 1.307E6 ± 1.2E3 1.308E6 ± 1.3E3

NMBDE Quantum Up TimeVarying Static Dynamic

2700

2800

2900

3000

0 250 500 750 1000

Pb1

3550

3600

3650

3700

0 250 500 750 1000

GK01

610000

615000

620000

625000

630000

0 250 500 750 1000

SCI2000

1260000

1270000

1280000

0 250 500 750 1000

ISCI5000

Fig. 5: Convergence curves of the six algorithms (the number of items increases from left to right).

TABLE VI: Better/Similar/Worse on 79 Knapsack datasets
(under the Wilcoxon test with a significance level of 0.05).

NMBDE Quantum Up TimeVarying Stat
Stat 39/18/22 32/47/0 43/21/15 17/39/23
Dyn 52/15/12 72/7/0 58/21/0 44/33/2 60/19/0

numbers of items, the differences between the six algorithms
are more significant. Up BPSO starts slower than the other
algorithms. Its profit is significantly improved in the last 100
iterations. Although NMBDE achieves a better profit than
Up BPSO in the first 900 iterations, its final profit is much
worse than Up BPSO due to the significant improvement of
Up BPSO in the last 100 iterations. The possible reason is
that Up BPSO has a better control between exploration and
exploitation. In the first 900 iterations, Up BPSO focuses more
on exploration than NMBDE, so its profit is not as good as
that of NMBDE. However, in the last 100 iterations, Up BPSO
focuses more on exploiting the discovered promising regions,
which results in its superiority over NMBDE. However, in
comparison with the other four BPSO algorithms, Up BPSO

has a worse performance despite its significant profit improve-
ment at the end. The main reason is the other four BPSO
algorithms steadily improves their profits, and they quickly
leave Up BPSO behind.

In comparison with Static SBPSO, Dynamic SBPSO focuses
more on exploration at the beginning, so its profit is slightly
worse than of Static SBPSO. However, when Dynamic SBPSO
focuses more on exploitation, its profit is improved more,
which results in the fact that Dynamic SBPSO achieves
better profit than Static SBPSO. Given 1000 iterations, some
algorithms such as Up BPSO have a rapid increment in the
later iterations, so we further compare the six algorithms with
3000 iterations. However, the pattern of 3000 iterations is
similar to that of 1000 iterations since the algorithms can adapt
with different maximum numbers of iterations because of their
dynamic mechanisms. More details can be seen in Section III
of the supplementary material.

To quantify the exploration/exploitation abilities of the
six algorithms, we record their population diversities during

10

NMBDE Quantum Up TimeVarying Static Dynamic

1

2

3

0 250 500 750 1000

Pb1

2

4

6

0 250 500 750 1000

GK01

10

20

30

0 250 500 750 1000

SCI2000

10

20

30

40

50

0 250 500 750 1000

ISCI5000

Fig. 6: Diversity profiles of the six algorithms.

their evolutionary processes. Particularly, the diversity at each
iteration is calculated by the average distances between all
population members. The diversity profiles of the six algo-
rithms are shown in Fig. 6. It can be seen that, on the large
datasets, NMBDE does not converge, which results in its poor
performance. This result illustrates that NMBDE encounters
troubles when dealing with large and complex search spaces.
Among BPSO algorithms, Up BPSO has the worst control
between exploration and exploitation. Its average distance
between particles is significantly reduced in the last 100 itera-
tions, which results in its sharp profit improvement at the end.
However, this strategy should be avoided since its final profit
is still not as good as other control strategies. Quantum BPSO
and Static SBPSO converge quicker than Dynamic SBPSO and
Time Varying BPSO. It is understandable since Static SBPSO
is a static algorithm. Quantum BPSO indirectly controls the
trade-off between exploration and exploitation through a sine()
function. Meanwhile, both Dynamic SBPSO and Time Varying
BPSO directly modifies the flipping probability to control the
trade-off. In comparison between Dynamic SBPSO and Time
Varying BPSO, it seems that Time Varying BPSO has a better
dynamic mechanism since it starts with a higher diversity
– more exploration and ends with a lower diversity – more
exploitation. However, the final profit obtained by Dynamic
SBPSO is still better than that of Time Varying BPSO.

To understand more about the search behavior of Time
Varying BPSO and Dynamic SBPSO, we utilize a concept
called “evolutionary factor” proposed in [51]. Firstly, the mean
distance from each particle i to the other particles is calculated,
called di. The evolutionary factor f is calculated as follows:

f =
dg − dmin
dmax − dmin

∈ [0, 1] (15)

where dg is the distance (di) of the globally best particle, dmin
and dmax are the minimum and maximum values of all di. The
evolutionary factors of Dynamic SBPSO and Time Varying
BPSO on SCI2000 are shown in Fig. 7. It can be seen that
for Dynamic SBPSO, there are many iterations where f = 0.
According to Eq. (15), f=0 if dg = dmin or the globally best
particle has the smallest average distance to other particles.
Therefore, f=0 indicates that all the particles search around
the globally best particle. A consistent pattern of Dynamic
SBPSO is that f is equal to 0 for some iterations and then f
is greater than 0 for some iterations. This pattern is repeated
during the whole evolutionary process of Dynamic SBPSO.

Thus, Dynamic SBPSO performs exploration and exploitation
alternatively, i.e., exploring (finding) a promising search region
and then exploiting the discovered region. This search behavior
is very different from that of Time Varying BPSO, which
sequentially focuses on exploration (large f values) at the
beginning and exploitation (small f values) at the end.

Experimental results show that the alternating approach
is more beneficial to large and complex search spaces. The
exploration steps aim to discover promising regions in the
search space; the exploitation steps aim to find the best
point within a promising region. In the sequential approach,
PSO may forget some discovered promising regions which
might contain an optimal solution. The alternating approach
can partially avoid that by exploiting discovered promising
regions as they are found. Furthermore, even if PSO does
not lose any promising regions, PSO usually splits its com-
putation resources evenly on different promising regions in
the exploitation step. In the sequential approach, the explo-
ration may result in a large number of promising regions,
so there will be only a little computation resource allocated
to each region, which may lead to these regions not being
well exploited, which does not result in good solutions. The
alternating approach exploits the promising regions as they
are found, so for each iteration, the number of promising
regions exploited by the alternating approach is usually smaller
than that of the sequential approach. Therefore, the alternating
approach puts more computation resources in each region,
which might result in better solutions. Most importantly, the
exploitation process usually results in better quality solutions
than the exploration process. Therefore, alternating between
exploration and exploitation usually leads to better swarm
quality during the evolutionary process, which is more likely
to result in better final solutions than the sequential approach,
given the same computation cost.

C. Computation time

The efficiency of the six algorithms is measured by com-
putation time, which is shown in Table VII. In the table,
the shortest computation time on each dataset is marked in
bold, and the second-shortest one is underlined. Note that
the table shows computation time only on GK datasets due
to the page limit. The same results are obtained in the other
datasets. Full average and standard deviation of computation
time on all GK and high-dimensional datasets are shown in

11

TimeVarying Dynamic

0.00

0.25

0.50

0.75

0 250 500 750 1000

SCI2000

Fig. 7: Evolutionary factors of Dynamic SBPSO and Time Varying.

TABLE VII: Computation time on GK datasets (seconds).

Dataset NMBDE Quantum Up TimeVarying Stat Dyn
GK01 1.21 1 1.36 1.36 0.6 0.63
GK02 1.23 1.03 1.39 1.39 0.64 0.67
GK03 1.82 1.55 2.06 2.05 0.94 0.99
GK04 1.91 1.65 2.16 2.15 1.04 1.09
GK05 2.4 2.05 2.74 2.71 1.26 1.33
GK06 2.53 2.19 2.87 2.86 1.39 1.47
GK07 5.98 5.15 6.74 6.7 3.63 3.83
GK08 6.28 5.44 7.05 7.02 4.03 4.18
GK09 17.7 15.55 20.13 20.01 12.37 12.78
GK10 18.54 16.45 21.04 20.96 13.39 13.75
GK11 34.57 31.38 38.85 38.95 24.16 24.32

Supplementary Material. As can be seen from Table VII, Static
SBPSO is the most efficient algorithm. The main reason is
that SBPSO involves fundamental and efficient operators such
as addition, subtraction, multiplication. Meanwhile, Quantum
BPSO uses a sine() function to convert from a real value to
a value in the range [0,1], which makes it more expensive
than SBPSO. NMBDE, Up BPSO, Time Varying BPSO are
the three most computationally intensive algorithms since they
use a logistic function to convert from a real value to a
value in the range [0,1]. The logistic function is expensive
since it involves an exponential calculation. The experimental
results show that SBPSO is more effective and efficient than
other binary benchmark algorithms. Compared with Static
SBPSO, Dynamic SBPSO is a bit slower due to its dynamic
mechanism. Therefore, Dynamic SBPSO provides a good
trade-off between effectiveness and efficiency.

VII. EXPERIMENTAL RESULTS ON FEATURE SELECTION

In this section, the five algorithms are compared on 15 UCI
feature selection datasets.

A. Feature Subsets

The comparisons on four terms: training accuracy, testing
accuracy, the number of selected features and computation
time are shown in Tables VIII and IX. In the tables, “All”
means that all features are used in the classification process.
The bold numbers/accuracies indicate that the corresponding
algorithms achieve the highest performance. Static and dy-
namic SBPSO algorithms are compared with other algorithms
using a Wilcoxon significance test with a significance level of
0.05.

As can be seen from Tables VIII and IX, on most datasets,
the two SBPSO versions can successfully evolve small feature
subsets with similar or better classification accuracy than using

all features. For example on Arrhythmia, static and dynamic
SBPSO select less than 28% of the original features while
achieving almost 2% higher accuracy than using all features.

Regarding training accuracies, Dynamic SBPSO achieves
the best classification performance on 10 out of the 15 datasets.
Meanwhile, Time Varying BPSO can achieve the best training
accuracies on only three out of the 15 datasets. Static SBPSO
is worse than only Time Varying BPSO, and it achieves the
best training accuracy on one dataset and the second-best
accuracy on four other datasets.

Regarding feature subset sizes, the two versions of SBPSO
completely dominates the other benchmark algorithms. While
Static SBPSO selects the lowest number of features on most
small and medium (less than 100 features) datasets, Dynamic
SBPSO selects the lowest number of features on the datasets
with large numbers of features.

Table IX shows the comparisons in regarding testing ac-
curacies and computation times. Dynamic SBPSO achieves
the best testing accuracy on five datasets and the second-
best accuracy on three out of the 15 datasets, which is the
same as Time Varying BPSO. Note that Dynamic SBPSO
usually selects smaller numbers of features than Time Varying
BPSO. It seems that testing accuracies of Dynamic SBPSO
are not as good as its training accuracies, which indicate
an overfitting problem on some datasets where the selected
features are only good for the training set. In feature selection,
the computation cost heavily depends on the number of
selected features. Therefore, both SBPSO versions achieve
good efficiency, especially on the large datasets where SBPSO
algorithms select much smaller numbers of features than the
other benchmark algorithms.

Table X shows the comparison results between two versions
of SBPSO and the other benchmark algorithms. Both Static
and Dynamic SBPSO are mostly similar or significantly better
than the other benchmark algorithms regarding training accu-
racies, numbers of selected features and testing accuracies. In
general, on all datasets, SBPSO can achieve at least the highest
classification accuracy or the smallest number of selected
features, which are the two main objectives of feature selec-
tion. However, since both objectives contribute to the fitness
function, analyzing them separately cannot show the searching
abilities of the algorithms. Therefore, the evolutionary process
is investigated in the next subsection.

12

TABLE VIII: Number of selected features and training accuracies on Feature Selection.

Dataset Number of selected features Training accuracies
All NMBDE Quantum Up TV Stat Dyn All NMBDE Quantum Up TV Stat Dyn

Wine 13.00 5.33 5.47 5.50 5.53 5.33 5.70 88.17 96.25 96.04 96.38 96.58 96.32 96.40
Australian 14.00 3.10 3.03 3.00 3.00 3.00 3.00 75.78 86.84 86.19 86.96 86.96 86.96 86.96
Zoo 17.00 4.03 4.43 4.13 4.20 4.03 4.07 86.72 97.62 97.83 97.64 97.72 97.62 97.62
Vehicle 18.00 7.87 8.03 8.00 8.17 7.27 7.60 88.51 89.78 89.91 89.86 90.00 89.78 89.80
German 24.00 11.23 11.00 12.20 10.17 9.90 10.23 80.14 81.51 81.36 81.43 81.15 80.88 81.06
WBCD 30.00 4.00 3.33 4.00 3.90 3.60 3.87 94.97 96.48 96.05 96.55 96.41 96.18 96.43
Ionosphere 34.00 5.60 5.60 6.20 5.30 4.87 4.80 85.77 94.07 94.11 93.81 94.16 94.00 94.22
Sonar 60.00 19.70 15.07 21.30 16.87 16.67 16.07 83.45 91.72 92.16 92.55 92.16 92.13 92.62
Movementlibras 90.00 26.63 23.37 26.20 23.57 22.33 22.77 97.88 97.91 97.87 97.86 97.92 97.92 97.93
Hillvalley 100.00 40.10 36.50 40.77 39.13 35.13 36.57 71.46 73.77 74.12 73.71 73.95 74.22 74.23
Musk1 166.00 77.83 73.53 76.33 73.67 71.37 68.70 92.19 94.63 95.16 94.57 95.28 95.34 95.53
Arrhythmia 278.00 106.13 93.13 108.73 89.47 82.03 79.60 94.35 95.43 95.79 95.56 95.85 95.81 96.00
Madelon 500.00 230.63 219.90 226.50 215.67 215.03 210.70 83.24 88.47 89.63 88.54 89.72 89.75 90.14
Isolet5 617.00 246.83 199.53 245.87 195.50 187.07 185.93 99.20 99.40 99.52 99.44 99.52 99.54 99.55
MultipleFeatures 649.00 252.37 201.93 248.60 193.63 135.67 133.50 99.33 99.57 99.61 99.61 99.62 99.62 99.62

TABLE IX: Computation times and testing accuracies on Feature Selection.

Dataset Computation times (seconds) Testing accuracies
NMBDE Quantum Up TV Stat Dyn All NMBDE Quantum Up TV Stat Dyn

Wine 3.28 3.26 3.26 3.25 3.28 3.29 76.54 97.53 97.00 97.78 98.15 97.74 97.82
Australian 53.27 53.01 53.76 53.66 54.14 54.47 70.05 85.65 84.87 85.51 85.51 85.51 85.51
Zoo 1.48 1.45 1.47 1.48 1.47 1.50 80.00 95.24 95.21 95.24 95.30 95.24 95.24
Vehicle 106.52 105.56 106.12 106.31 105.57 107.11 84.06 85.15 85.11 85.13 85.23 85.21 85.18
German 206.90 204.64 204.88 204.00 204.15 207.04 68.00 69.10 68.93 69.01 68.66 68.79 69.15
WBCD 73.80 74.82 71.92 76.70 75.99 78.30 92.98 93.06 93.57 93.22 93.10 93.33 93.10
Ionosphere 33.06 32.35 33.11 32.82 32.87 33.30 83.81 88.67 88.54 87.94 87.84 87.52 87.74
Sonar 20.84 20.22 20.93 20.65 20.97 20.92 76.19 80.16 79.89 79.89 80.48 80.37 80.79
Movementlibras 105.47 103.25 106.75 103.14 101.77 102.58 94.69 94.48 94.64 94.51 94.57 94.66 94.55
Hillvalley 1438.87 1422.43 1460.25 1425.26 1410.05 1416.21 56.59 57.33 57.80 58.05 58.38 57.99 58.03
Musk1 266.75 259.78 258.35 261.79 253.14 254.44 83.92 86.55 86.53 85.80 86.55 85.80 86.99
Arrhythmia 273.21 263.63 286.21 267.64 254.00 258.86 93.78 94.60 94.90 94.65 94.88 94.88 95.08
Madelon 13666.27 13061.01 13418.19 13170.90 13020.71 12690.82 70.90 78.59 79.74 78.76 79.55 79.39 79.94
Isolet5 4874.18 4557.99 5222.76 4659.38 4458.97 4298.37 98.36 98.69 98.89 98.76 98.89 98.85 98.87
MultipleFeatures 8308.84 7561.56 8641.53 7730.79 6820.79 7111.59 98.57 99.04 99.10 99.02 99.08 99.06 99.08

 NMBDE Quantum Up TimeVarying Static Dynamic

15

17

19

0 25 50 75 100

Australian

9

12

15

18

0 25 50 75 100

Sonar

5.0

5.5

6.0

6.5

0 25 50 75 100

Arrhythmia

1.25

1.50

1.75

2.00

0 25 50 75 100

Isolet5

Fig. 8: Convergence curves of the six algorithms on Feature Selection.

TABLE X: Significance test results on Feature Selection.

Method NMBDE Quantum Up TimeVarying Stat
Training Accuracy
Stat 5/8/2 2/12/1 4/9/2 1/13/1
Dyn 6/9/0 5/9/1 6/8/1 3/12/0 3/12/0
Number of features
Stat 11/4/0 5/10/9 11/4/0 5/10/0
Dyn 8/7/0 6/8/1 10/5/0 5/10/0 0/15/0
Testing Accuracy
Stat 5/9/1 1/13/1 3/12/0 0/15/0
Dyn 4/10/1 2/12/1 5/10/0 1/14/0 2/13/0

B. Evolutionary Processes

Similar to Knapsack, the best fitness value is recorded
for each iteration. However, since each algorithm is run 30
independent times, the average of 30 best fitness values in
each generation from the 30 runs is recorded. Therefore,
for each algorithm, there will be 100 average fitness values
corresponding to the 100 iterations. The 100 average values
are used to draw an algorithm’s convergence curve, which is

shown in Fig. 8. In feature selection, the target is to minimize
the fitness function so the lower the fitness value, the better the
algorithm. In the figure, only four evolutionary processes are
shown, since the processes are similar on the other datasets.

As can be seen from the figure, Up BPSO and NMBDE
still perform worst on most datasets, especially on datasets
with large numbers of features. In comparison with other
benchmark algorithms, Static SBPSO evolves better feature
subsets with smaller fitness values on large datasets such
as Arrhythmia and Isolet5. On small and medium datasets,
Static SBPSO is worse than at most one benchmark algorithm
although Static SBPSO does not use any dynamic mechanism
to control its parameters. This result illustrates the stability of
Static SBPSO on different binary problems.

On most datasets, Dynamic SBPSO achieves the best fitness
value. Similar to Knapsack, Static SBPSO usually generates
better solutions than Dynamic SBPSO at the beginning. The
main reason is that Dynamic SBPSO focuses on exploration

13

more than Static SBPSO at the beginning, it tends to discover
more promising regions rather than focusing on specific re-
gions. Therefore, once Dynamic SBPSO focuses more on ex-
ploitation, it can improve its fitness value over Static SBPSO.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, new metaphors for BPSO are introduced
to consider the properties of binary search spaces. Notably,
the velocity of BPSO is redefined as a flipping probability
vector, and the momentum is redefined as the tendency to
“stick” with the current position. A primary advantage of the
proposed algorithm is that the two new metaphors describe
the movement of binary particles as bouncing between binary
points in a binary search space. Therefore, the proposed
algorithm reflects binary movements more naturally and accu-
rately which makes it easier to define and control exploration
and exploitation. Based on that, a dynamic strategy is also
developed to manage the contributions of momentum, pbest
and gbest to the movement of particles, which results in
the balance between exploration and exploitation during the
evolutionary process. The two versions of the proposed BPSO
algorithm, i.e., Static and Dynamic SBPSO, are compared with
four well-known/state-of-the-art dynamic algorithms NMBDE,
Quantum BPSO, Up and Time Varying BPSO on two binary
problems: knapsack and feature selection. The experimental
results show that Dynamic SBPSO can achieve better perfor-
mance than the other four benchmark algorithms on most of
the cases. Although Static SBPSO is not as good as Dynamic
SBPSO, it still evolves better solutions than the other four
dynamic algorithms on large and complex search spaces. The
superiority of Dynamic SBPSO over Static SBPSO illustrates
that it is better to focus more on exploration at the beginning
and gradually shift towards exploitation. More importantly,
on a large and complex search space, it is better to take an
alternating approach which alternates between exploration and
exploitation than a sequential approach which performs all the
exploration followed by all the exploitation. The alternating
mechanism is a built-in property of SBPSO, and it is expected
that SBPSO can be applied to other complex binary problems.
Another advantage of the proposed algorithm is its simple
computation consisting of basic mathematic operators, which
leads to a high efficiency of the proposed algorithm.

Although SBPSO achieves promising results, there is future
work can be done to further improve SBPSO. For example,
Dynamic SBPSO performs well on the large and complex
search spaces. However, the performance is not significantly
improved on the small problems over the benchmark algo-
rithms. This limitation might be tackled by developing more
sophisticated updating mechanism for parameters, for instance,
an adaptive/non-linear updating mechanism.

REFERENCES

[1] J. Kennedy, R. Eberhart et al., “Particle swarm optimization,” in Pro-
ceedings of IEEE international conference on neural networks, vol. 4,
no. 2, 1995, pp. 1942–1948.

[2] M. R. AlRashidi and M. E. El-Hawary, “A survey of particle swarm
optimization applications in electric power systems,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 4, pp. 913–918, 2009.

[3] Z. Zhu, J. Zhou, Z. Ji, and Y. H. Shi, “DNA sequence compression using
adaptive particle swarm optimization-based memetic algorithm,” IEEE
Transactions on Evolutionary Computation, vol. 15, no. 5, pp. 643–658,
2011.

[4] W. Hu and G. G. Yen, “Adaptive multiobjective particle swarm opti-
mization based on parallel cell coordinate system,” IEEE Transactions
on Evolutionary Computation, vol. 19, no. 1, pp. 1–18, 2015.

[5] Y.-J. Gong, J.-J. Li, Y. Zhou, Y. Li, H. S.-H. Chung, Y.-H. Shi,
and J. Zhang, “Genetic learning particle swarm optimization,” IEEE
Transactions on Cybernetics, vol. 46, no. 10, pp. 2277–2290, 2016.

[6] W. N. Chen, J. Zhang, H. S. H. Chung, W. L. Zhong, W. G. Wu,
and Y. h. Shi, “A novel set-based particle swarm optimization method
for discrete optimization problems,” IEEE Transactions on Evolutionary
Computation, vol. 14, no. 2, pp. 278–300, 2010.

[7] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[8] M. Eddaly, B. Jarboui, and P. Siarry, “Combinatorial particle swarm op-
timization for solving blocking flowshop scheduling problem,” Journal
of Computational Design and Engineering, vol. 3, no. 4, pp. 295 – 311,
2016.

[9] H. Banka and S. Dara, “A hamming distance based binary particle
swarm optimization (HDBPSO) algorithm for high dimensional feature
selection, classification and validation,” Pattern Recognition Letters,
vol. 52, pp. 94 – 100, 2015.

[10] B. H. Nguyen, B. Xue, and P. Andreae, A Novel Binary Particle Swarm
Optimization Algorithm and Its Applications on Knapsack and Feature
Selection Problems. Cham: Springer International Publishing, 2017,
pp. 319–332.

[11] C. Blum and X. Li, “Swarm intelligence in optimization,” in Swarm
Intelligence. Springer, 2008, pp. 43–85.

[12] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[13] F. van den Bergh and A. Engelbrecht, “A study of particle swarm
optimization particle trajectories,” Information Sciences, vol. 176, no. 8,
pp. 937 – 971, 2006.

[14] M. A. Khanesar, M. Teshnehlab, and M. A. Shoorehdeli, “A novel binary
particle swarm optimization,” in Mediterranean Conference on Control
Automation(MED)., 2007, pp. 1–6.

[15] J. Liu, Y. Mei, and X. Li, “An analysis of the inertia weight parameter for
binary particle swarm optimization,” IEEE Transactions on Evolutionary
Computation, vol. 20, no. 5, pp. 666–681, 2016.

[16] K. Sarath and V. Ravi, “Association rule mining using binary particle
swarm optimization,” Engineering Applications of Artificial Intelligence,
vol. 26, no. 8, pp. 1832–1840, 2013.

[17] M. A. Taha and D. I. A. al Nadi, “Spectrum sensing for cognitive
radio using binary particle swarm optimization,” Wireless personal
communications, vol. 72, no. 4, pp. 2143–2153, 2013.

[18] J. C.-W. Lin, L. Yang, P. Fournier-Viger, T.-P. Hong, and M. Voznak,
“A binary PSO approach to mine high-utility itemsets,” Soft Computing,
pp. 1–19, 2016.

[19] S. Mirjalili and A. Lewis, “S-shaped versus V-shaped transfer functions
for binary particle swarm optimization,” Swarm and Evolutionary Com-
putation, vol. 9, pp. 1–14, 2013.

[20] M. J. Islam, X. Li, and Y. Mei, “A time-varying transfer function for
balancing the exploration and exploitation ability of a binary pso,”
Applied Soft Computing, vol. 59, pp. 182–196, 2017.

[21] J. C. Bansal and K. Deep, “A modified binary particle swarm optimiza-
tion for knapsack problems,” Applied Mathematics and Computation,
vol. 218, no. 22, pp. 11 042–11 061, 2012.

[22] Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary PSO with mutation
operator for feature selection using decision tree applied to spam
detection,” Knowledge-Based Systems, vol. 64, pp. 22–31, 2014.

[23] J. Yang, H. Zhang, Y. Ling, C. Pan, and W. Sun, “Task allocation
for wireless sensor network using modified binary particle swarm
optimization,” IEEE Sensors Journal, vol. 14, no. 3, pp. 882–892, 2014.

[24] A. H. El-Maleh, A. T. Sheikh, and S. M. Sait, “Binary particle swarm
optimization (BPSO) based state assignment for area minimization of
sequential circuits,” Applied soft computing, vol. 13, no. 12, pp. 4832–
4840, 2013.

[25] T. Zhai and Z. He, “Instance selection for time series classification
based on immune binary particle swarm optimization,” Knowledge-
Based Systems, vol. 49, pp. 106–115, 2013.

[26] G. Pampara, N. Franken, and A. P. Engelbrecht, “Combining particle
swarm optimisation with angle modulation to solve binary problems,”
in Evolutionary Computation, 2005. The 2005 IEEE Congress on, vol. 1.
IEEE, 2005, pp. 89–96.

14

[27] Y.-W. Jeong, J.-B. Park, S.-H. Jang, and K. Y. Lee, “A new quantum-
inspired binary pso: application to unit commitment problems for power
systems,” IEEE Transactions on Power Systems, vol. 25, no. 3, pp. 1486–
1495, 2010.

[28] H. bin Ouyang, L. qun Gao, S. Li, and X. yong Kong, “Improved
global-best-guided particle swarm optimization with learning operation
for global optimization problems,” Applied Soft Computing, vol. 52, pp.
987 – 1008, 2017.

[29] M. F. Tasgetiren, Q. K. Pan, D. Kizilay, and G. Suer, “A differential
evolution algorithm with variable neighborhood search for multidimen-
sional knapsack problem,” in 2015 IEEE Congress on Evolutionary
Computation (CEC), 2015, pp. 2797–2804.

[30] J. P. Martins, H. Longo, and A. C. Delbem, “On the effectiveness
of genetic algorithms for the multidimensional knapsack problem,”
in Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO
Comp ’14, 2014, pp. 73–74.

[31] H. Ishibuchi, N. Akedo, and Y. Nojima, “Behavior of multiobjective
evolutionary algorithms on many-objective knapsack problems,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 2, pp. 264–283,
2015.

[32] M. Chih, “Self-adaptive check and repair operator-based particle swarm
optimization for the multidimensional knapsack problem,” Applied Soft
Computing, vol. 26, pp. 378–389, 2015.

[33] ——, “Three pseudo-utility ratio-inspired particle swarm optimization
with local search for multidimensional knapsack problem,” Swarm and
evolutionary computation, vol. 39, pp. 279–296, 2018.

[34] H. Zhao, A. P. Sinha, and W. Ge, “Effects of feature construction on
classification performance: An empirical study in bank failure predic-
tion,” Expert Systems with Applications, vol. 36, no. 2, pp. 2633–2644,
2009.

[35] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016.

[36] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification: A
review,” Data Classification: Algorithms and Applications, p. 37, 2014.

[37] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang,
and H. Liu, “Feature selection: A data perspective,” CoRR, vol.
abs/1601.07996, 2016.

[38] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust feature
selection via joint l2,1-norms minimization,” in Advances in Neural
Information Processing Systems 23, J. D. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds. Curran Associates,
Inc., 2010, pp. 1813–1821.

[39] H. Nguyen, B. Xue, I. Liu, and M. Zhang, “Filter based backward
elimination in wrapper based pso for feature selection in classification,”
in 2014 IEEE Congress on Evolutionary Computation (CEC), 2014, pp.
3111–3118.

[40] L. Wang, X. Fu, Y. Mao, M. I. Menhas, and M. Fei, “A novel
modified binary differential evolution algorithm and its applications,”
Neurocomputing, vol. 98, pp. 55 – 75, 2012.

[41] A. P. Engelbrecht and G. Pampara, “Binary differential evolution strate-
gies,” in 2007. IEEE Congress on Evolutionary Computation (CEC),
2007, pp. 1942–1947.

[42] S. Khuri, T. Bäck, and J. Heitkötter, “The zero/one multiple knapsack
problem and genetic algorithms,” in Proceedings of the 1994 ACM
symposium on Applied computing. ACM, 1994, pp. 188–193.

[43] F. Glover and G. A. Kochenberger, “Critical event tabu search for
multidimensional knapsack problems,” in Meta-Heuristics. Springer,
1996, pp. 407–427.

[44] D. Pisinger, “Where are the hard knapsack problems?” Computers and
Operations Research, vol. 32, no. 9, pp. 2271–2284, 2005.

[45] E. Özcan and C. Başaran, “A case study of memetic algorithms for
constraint optimization,” Soft Computing, vol. 13, no. 8, p. 871, Jul
2008.

[46] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[47] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimization
for feature selection in classification: A multi-objective approach,” IEEE
Transactions on Cybernetics, vol. 43, no. 6, pp. 1656–1671, 2013.

[48] J. C. Bansal and K. Deep, “A modified binary particle swarm optimiza-
tion for knapsack problems,” Applied Mathematics and Computation,
vol. 218, no. 22, pp. 11 042–11 061, 2012.

[49] M. S. Mohamad, S. Omatu, S. Deris, and M. Yoshioka, “A modified
binary particle swarm optimization for selecting the small subset of
informative genes from gene expression data,” IEEE Transactions on

information Technology in Biomedicine, vol. 15, no. 6, pp. 813–822,
2011.

[50] S. Lee, S. Soak, S. Oh, W. Pedrycz, and M. Jeon, “Modified binary
particle swarm optimization,” Progress in Natural Science, vol. 18, no. 9,
pp. 1161–1166, 2008.

[51] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, “Adaptive particle
swarm optimization,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics), vol. 39, no. 6, pp. 1362–1381, 2009.

