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1 Lebesgue measure estimation using Monte Carlo
sampling

The Lebesgue measure λ(H(F,R)) integrates the area covered by a set of loss
function vectors in a multi-dimensional objective space. This measure is com-
prised of three sets: F , R, and Z. F denotes the set of representations of functions
(which map the input data to a vector of loss function values). R denotes the set
of mutually non-dominating loss vectors. Initially, R is set to the unit loss vec-
tor {1}3, which denotes the worst possible performance for Hamming-loss, one
minus the Micro-F1, and one minus the label ranking average precision. Last,
Z denotes the set containing all possible loss function vectors in the applicable
multi-dimensional loss objective space.

The Lebesgue contribution λ(P (f)) of a function f measures the new marginal
improvement of a function’s loss vector over a set of previous loss vectors. In this
paper, we use the Lebesgue contribution to quantify candidate functions found
by CLML during the optimisation process. However, to efficiently calculate the
Lebesgue contribution (especially when the set of functions F and R are sparsely
populated during the early stages of the optimisation), we estimate the Lebesgue
measure using Monte Carlo sampling. First, a sampling space S ⊆ Z is defined
that entirely contains P (f), i.e., P (f) ⊆ S ⊆ Z. The sampling space can be
problem-specific, however, in this paper, it is defined to contain all possible loss
vectors between {0}3 and {1}3. Following, g samples are drawn from si ∈ S
randomly and with uniform probability. Given {s1, · · · , sg}, the Lebesgue con-
tribution is estimated via λ̂(P (f)) via the following:

λ̂(P (f)) = λ(S(f)) =
|{si|si ∈ P (f)}|

g
(1)

where |{si|si ∈ P (f)}| is denoted as the number of randomly sampled solutions
that exist in P (f), also known as hits. The probability p of a sample being hit
is i.i.d. Bernoulli distributed, therefore, λ̂(P (f)) converges to λ(P (f)) with 1√

pg

[3].
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2 Proof of Theorem 4.5: A Consistent Lebesgue

lim
n→∞

λ(H(F (n), R)) → λ(H(PB , R)) then

RL1
(f (n)) → RB

L1
(f)∧

RL2(f
′(n)) → RB

L2
(f ′)∧

RL3(f
′′(n)) → RB

L3
(f ′′).

(2)

In other words, the maximisation of λ(H(F (n), R)) tends to the convergence
toward the Bayes risk for each loss function Li ∀i : 1 ≤ i ≤ 3, f (n), f

′(n), f
′′(n) ∈

F (n) and that f, f ′, f ′′ ∈ PB .

Proof. We will use contradiction to prove that maximising λ(H(F (n), R)) ensures
convergence to the Bayes predictors.

Assumption: suppose there exists a sequence F (n) such that maximising
λ(H(F (n), R))) does not converge to the Bayes predictors for L1, L2, or L3.
Specifically, assume there exists a function fγ ∈ F (n) such that:

fγ /∈ PB ∧RB
Lv

(fγ) ∃v ∈ {1, 2, 3}. (3)

– Properties of fγ /∈ PB :
If fγ /∈ PB , then by the definition of Pareto optimality, there exists another
function fβ ∈ PB such that:

∀i : Li(fβ) ≤ Li(fγ) ∧ ∃k : Lk(fβ) < Lk(fγ). (4)

– Contradiction for the Bayes Predictor:
If fγ is a Bayes predictor for Lv, then:

RLv
(fγ) = RB

Lv
(fγ) =⇒ Lv(fγ) ≤ Lv(fβ). (5)

However, this contradicts fβ strictly dominating fγ on Lk (where k ̸= v
or k = v with strict inequality). Therefore, fγ /∈ PB cannot be a Bayes
predictor.

– Convergence of F (n) to PB :
Maximising λ(H(F (n), R)) ensures that non-dominated solutions increas-
ingly dominate the objective space Z as n → inf. This implies:

λ(H(F (n), R)) → λ(H(PB , R)) as n → inf . (6)

Since PB contains only Pareto optimal functions, and every Bayes predictor
belongs to PB , this convergence guarantees that the sequence F (n) minimises
L1, L2, and L3 asymptotically.

By contradiction, the assumption that λ(H(F (n), R)) does not converge to
the Bayes predictors is false. Therefore:
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lim
n→∞

λ(H(F (n), R)) → λ(H(PB , R)) =⇒

RL1
(f (n)) → RB

L1
(f)∧

RL2
(f

′(n)) → RB
L2
(f ′)∧

RL3
(f

′′(n)) → RB
L3
(f ′′).

(7)

3 Experimental Protocol

We conduct the experiments on nine widely-used multi-label datasets. Several
datasets such as tmc2007-500, enron, and IMDB-F originate from the text do-
main, although they have been processed into a tabular format. Flags and me-
diamill respectively similarly originate from image and video domains. The tab-
ulated data in this paper encompasses a wide variety of domains, and CLML
is applied to varying modalities that have been vectorised/flattened using pre-
trained models or pre-specified methods. Kµ (the cardinality) of an instance
measures the average number of associated class labels; DK/Kµ, the theoretical
maximum complexity of an instance, (i.e., the instance-level average disper-
sion of feature to label interactions); and DKµ, the average feature to label
interactions of an instance. There are two important cases to consider. First, if
dispersion is less than the average interaction, i.e., DK/Kµ < DKµ, then the
dataset contains high concentrations of rich instance-level feature-to-label inter-
actions that are not apparent when examining the dataset as a whole. This can
indicate that there are clusters of instances that share similar feature-to-label in-
teractions, and therefore a less diverse dispersion of the possible feature-to-label
interactions. Second, if dispersion is higher than the average interaction, i.e.,
DK/Kµ > DKµ, the dataset as a whole has a greater expression of feature-to-
label interactions than a given individual instance. Put differently, the dataset’s
instances each contain a subset of the total dataset interactions. The latter case
is particularly challenging as it indicates a high number and variability of poten-
tial patterns and interactions between features and labels. The first case occurs
in both Flags and Yeast and the second case occurs in the remaining datasets.

For each dataset, 30% are partitioned to the test set [4]. The remaining 70% is
further split such that 20% is used as a validation set, and the remaining is used
for training. We apply normalisation to all numerical features before training.

4 Ablation Study

We trial the embedding dimension C at eight separate values. It is important
to note that the latent space does not need to express spatial relationships of
tabulated data, hence the embedding dimension can be quite small (in contrast
to computer vision in works such as [2]). In addition to L1,L2, and L3, we
set L4 as the averaged binary cross-entropy loss and track its progress during
optimisation. For each experiment, we set O = 750 (the maximum number of
epochs). Here, we present the results for each of the embedding dimensions.
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Figures 1 and 2 plot the Lebesgue measure of the sequence of functions
obtained by CLML as n → O (i.e., the archive of non-dominated solutions
obtained by CLML in O epoch). Smaller embedding dimensions (i.e., C ≤ 80)
result in the best validation scores of λ(H(F,R)). To exemplify this, we tabulate
the incumbent solution of the function sequence in terms of its L1, L2, and
L3 scores on the validation set, against L4 according to each (non-normalised)
value of C in Table 1 and 2. When C = 20, we observe the lowest L1, L2, and L3

validation loss scores on the emotions dataset, and the lowest λ(H(F,R)) score
on the CAL500 dataset. This observation indicates that CLML converges toward
a better approximation of the Bayes predictors of L1, L2, and L3 on the emotions
dataset, while on CAL500, CLML finds functions with more desirable trade-offs
between the variant loss functions, hence the higher Lebesgue measure. These
values motivate our recommendation to set the number of embedding dimensions
to C = 20.
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Fig. 1: The best Lebesgue measure ob-
tained on CAL500 at each embedding
dimension of the sequence of function
sets lim

n→O
λ(H(F (n), R)).

Table 1: Best validation loss values of
the incumbent solution for each em-
bedding dimension on CAL500.

C L1 L2 L3 L4

20.0 0.169 0.523 0.509 138.068
40.0 0.171 0.522 0.518 143.809
60.0 0.169 0.523 0.520 144.201
80.0 0.161 0.527 0.525 149.604
100.0 0.196 0.529 0.534 157.877
120.0 0.171 0.529 0.539 155.555
140.0 0.167 0.528 0.534 151.250
160.0 0.168 0.526 0.533 153.533
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Fig. 2: The best Lebesgue measure ob-
tained on emotions at each embedding
dimension of the sequence of function
sets lim

n→O
λ(H(F (n), R)).

Table 2: Best validation loss values of
the incumbent solution for each em-
bedding dimension on emotions.

C L1 L2 L3 L4

20.0 0.187 0.283 0.178 3.399
40.0 0.199 0.307 0.197 3.246
60.0 0.192 0.299 0.196 3.255
80.0 0.196 0.306 0.196 3.910
100.0 0.199 0.302 0.199 3.742
120.0 0.210 0.333 0.212 3.557
140.0 0.202 0.313 0.193 4.380
160.0 0.250 0.398 0.252 5.758
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Table 3: Lebesgue measure contributions of each f on datasets: CAL500 to gen-
base
Dataset Method Solution HV Contribution Normalized Contribution Geometric Mean

CAL500 GNB-BR (0.547, 0.713, 0.647) 0 0 0.631976
CAL500 GNB-CC (0.255, 0.633, 0.741) 0 0 0.492774
CAL500 MLKNN (0.150, 0.637, 0.554) 0.000351 0.020488 0.375585
CAL500 C2AE (0.258, 0.536, 0.534) 0 0 0.419409
CAL500 CLIF (0.137, 0.681, 0.502) 0.007068 0.412185 0.360752
CAL500 DELA (0.171, 0.633, 0.596) 0 0 0.400750
CAL500 CLML (0.168, 0.526, 0.520) 0.009729 0.567326 0.358231
yeast GNB-BR (0.319, 0.472, 0.351) 0 0 0.375014
yeast GNB-CC (0.319, 0.481, 0.415) 0 0 0.399048
yeast MLKNN (0.213, 0.375, 0.298) 0 0 0.287821
yeast C2AE (0.221, 0.358, 0.272) 0.003081 0.425447 0.278355
yeast CLIF (0.227, 0.391, 0.275) 0 0 0.290108
yeast DELA (0.226, 0.391, 0.276) 0 0 0.289957
yeast CLML (0.211, 0.364, 0.266) 0.004160 0.574553 0.273480
enron GNB-BR (0.198, 0.725, 0.776) 0 0 0.481206
enron GNB-CC (0.125, 0.638, 0.742) 0 0 0.389782
enron MLKNN (0.056, 0.529, 0.436) 0 0 0.234964
enron C2AE (0.189, 0.665, 0.487) 0 0 0.393941
enron CLIF (0.053, 0.499, 0.381) 0.002600 0.449837 0.216576
enron DELA (0.054, 0.493, 0.386) 0.000126 0.021742 0.218104
enron CLML (0.054, 0.488, 0.411) 0.003055 0.528421 0.220966
genbase GNB-BR (0.052, 0.479, 0.538) 0 0 0.237314
genbase GNB-CC (0.008, 0.078, 0.091) 0 0 0.037745
genbase MLKNN (0.033, 0.454, 0.331) 0 0 0.170749
genbase C2AE (0.345, 0.823, 0.561) 0 0 0.542500
genbase CLIF (0.046, 0.793, 0.539) 0 0 0.269161
genbase DELA (0.002, 0.020, 0.001) 0.144566 1.000000 0.003138
genbase CLML (0.020, 0.239, 0.117) 0 0 0.082065
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Table 4: Lebesgue measure contributions of each f on datasets: emotions to
mediamill
Dataset Method Solution HV Contribution Normalized Contribution Geometric Mean

emotions GNB-BR (0.410, 0.458, 0.271) 0 0 0.370604
emotions GNB-CC (0.265, 0.383, 0.256) 0 0 0.295937
emotions MLKNN (0.268, 0.497, 0.361) 0 0 0.363696
emotions C2AE (0.537, 0.556, 0.488) 0 0 0.526199
emotions CLIF (0.223, 0.412, 0.246) 0 0 0.282547
emotions DELA (0.216, 0.353, 0.214) 0.005072 0.191264 0.253682
emotions CLML (0.205, 0.328, 0.224) 0.021444 0.808736 0.246669
flags GNB-BR (0.443, 0.560, 0.439) 0 0 0.477465
flags GNB-CC (0.402, 0.496, 0.360) 0 0 0.415483
flags MLKNN (0.307, 0.302, 0.233) 0 0 0.278388
flags C2AE (1.000, 1.000, 1.000) 0 0 1.000000
flags CLIF (0.298, 0.316, 0.217) 0 0 0.273610
flags DELA (0.271, 0.284, 0.231) 0.006058 0.463227 0.260929
flags CLML (0.281, 0.285, 0.205) 0.007020 0.536773 0.254035
IMDB-F GNB-BR (0.276, 0.875, 0.489) 0 0 0.490350
IMDB-F GNB-CC (0.391, 0.892, 0.506) 0 0 0.560657
IMDB-F MLKNN (0.044, 0.929, 0.376) 0.000180 0.003999 0.249118
IMDB-F C2AE (0.052, 0.743, 0.324) 0.044679 0.993734 0.231745
IMDB-F CLIF (0.049, 0.825, 0.391) 0 0 0.250780
IMDB-F DELA (0.054, 0.831, 0.381) 0 0 0.257251
IMDB-F CLML (0.048, 0.802, 0.358) 0.000102 0.002268 0.240283
tmc2007-500 GNB-BR (0.598, 0.759, 0.822) 0 0 0.719892
tmc2007-500 GNB-CC (0.413, 0.697, 0.784) 0 0 0.608986
tmc2007-500 MLKNN (0.065, 0.351, 0.261) 0 0 0.181723
tmc2007-500 C2AE (0.051, 0.250, 0.145) 0 0 0.122771
tmc2007-500 CLIF (0.040, 0.203, 0.123) 0.007761 1.000000 0.099828
tmc2007-500 DELA (0.041, 0.207, 0.128) 0 0 0.102543
tmc2007-500 CLML (0.080, 0.427, 0.321) 0 0 0.222227
mediamill GNB-BR (0.338, 0.845, 0.787) 0 0 0.608021
mediamill GNB-CC (0.130, 0.708, 0.786) 0 0 0.416542
mediamill MLKNN (0.030, 0.412, 0.283) 0 0 0.152028
mediamill C2AE (0.042, 0.445, 0.285) 0 0 0.174138
mediamill CLIF (0.027, 0.364, 0.216) 0.035504 1.000000 0.128975
mediamill DELA (0.031, 0.380, 0.252) 0 0 0.144388
mediamill CLML (0.035, 0.464, 0.353) 0 0 0.178885
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5 Extended evaluation of multi-label classification
performances

Tables 3 and 4 show the expanded view of the loss values (L1, L2, and L3), the
Lebesgue contribution (λ(P (f))), the normalised Lebesgue contribution, and
geometric means of each comparative method on each dataset. A zero value
on the Lebesgue contribution indicates that a given function is dominated by
all other functions on the given dataset, i.e., it does not contribute toward the
improvement of the volume over L(f(X),Y).
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Fig. 3: The training curves of CLML on datasets flags through yeast (c-f).
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Fig. 4: The training curves of CLML on datasets tmc2007-500 through IMDB-F
(g-i).
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6 Extended results of training curves against surrogate
loss

Figures 3 and 4 plot the training curves of CLML on datasets flags through
IMDB-F (c-i).

7 Useful definitions, corollaries, and lemmas

Definition 1 (Metric Risk). We define the conditional and Bayes risk of
L1,L2, and L3 given X and Y for i = 1, 2, 3 as follows:

RLi
(f) =

1

N

N∑
j=1

∑
yj∈Y

p(yj |xj)Li(f(xj),yj)

RB
Li
(f) =

1

N

N∑
j=1

inf
f ′
[
∑
yj∈Y

p(yj |xj)Li(f
′(xj),yj)]

(8)

The overall risk and Bayes risk is given by:

RL(f) = (RL1
(f), RL2

(f), RL3
(f))

RB
L(f) = (RB

L1
(f), RB

L2
(f), RB

L3
(f))

(9)

Corollary 1 (Below-bounded and Interval). The Lebesgue measure is natu-
rally below-bounded and interval, i.e., for any F, F ′ and R,R′ ⊂ Z, λ(H(F,R)) =
λ(H(F ′, R′)) or |λ(H(F,R)) − λ(H(F ′, R′))| > 0, which is naturally inherited
from the underlying below-bounded and interval properties of L1,L2 and L3 fol-
lowing [1].

Lemma 1 (The Lebesgue Contribution Equals Lebesgue Improvement).
Let λ(H(F,R)) denote the Lebesgue measure over a set F . The overall improve-
ment toward the minimisation of L1,L2, and L3, is prescribed by the volume of
λ(H(F,R)), which can be expressed as the sum of contributions of losses for each
function representation f ∈ F :

λ(H(F,R)) =
∑
f∈F

λ(P (f)) =

∑
f∈F

∫
Ro

1H({f},R)\H(F\{f},R)(z)dz
(10)

Proof. Consider a redefined Lebesgue measure as the union of non-overlapping
(disjoint) contribution regions for each f ∈ F . By substitution:

λ(H(F,R)) =

∫
Ro

1H(F,R)(z)dz =∫
Ro

1∪f∈FH({f},R)\H(F\{f},R)(z)dz
(11)
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The integral can be re-written to express the sum over disjoint contribution
regions: ∫

Ro

1∪f∈FH({f},R)\H(F\{f},R)(z)dz =∑
f∈F

∫
Ro

1H({f},R)\H(F\{f},R)(z)dz =
∑
f∈F

λ(P (f)).
(12)
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