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Abstract—Feature selection is an important task in machine
learning that has two main objectives: reducing dimensionality
and improving learning performance. Feature selection can
be considered a multi-objective problem. However, it has its
problematic characteristics, such as a highly discontinuous Pareto
front, imbalance preferences and partially conflicting objectives.
These characteristics are not easy for existing evolutionary multi-
objective optimization algorithms. We propose a new decomposi-
tion approach with two mechanisms (static and dynamic) based
on multiple reference points under the MOEA/D (Multi-objective
Evolutionary Algorithm based on Decomposition) framework to
address the above-mentioned difficulties of feature selection. The
static mechanism alleviates the dependence of the decomposition
on the Pareto front shape and the effect of the discontinuity. The
dynamic one is able to detect regions in which the objectives are
mostly conflicting, and allocates more computational resources
to the detected regions. In comparison with other evolutionary
multi-objective optimization algorithms on 12 different classifica-
tion datasets, the proposed decomposition approach finds more
diverse feature subsets with better performance in terms of
hypervolume and inverted generational distance. The dynamic
mechanism successfully identifies conflicting regions and further
improves the approximation quality for the Pareto fronts.

Index Terms—MOEA/D, Feature Selection, Classification,
Multi-objective Optimization, Partially Conflicting

I. INTRODUCTION

Rapid advancements of technologies result in high-
dimensional datasets that usually suffer from various issues
such as noisy feature values, irrelevant features, and redundant
features. Such issues can reduce accuracy and increase training
time [1]. Feature selection is one of the most popular ways
to improve the quality of a feature set. For a classification
problem, feature selection aims to extract a small subset
of features with a high discriminating ability. By reducing
the dimensionality, feature selection not only improves the
classification performance but also yields simpler and more
general classifiers [2]. However, feature selection is challeng-
ing due to complicated interactions among features and a large
search space which increases exponentially with respect to the
number of features [3]. Feature selection is considered a multi-
objective problem since its two main objectives, reducing the
number of features and improving the classification perfor-
mance, are usually conflicting with each other.

As a family of population-based optimization techniques,
evolutionary computation (EC) can be naturally applied to
evolve a set of trade-off solutions for multi-objective prob-
lems, including feature selection. A number of different evo-

lutionary multi-objective optimization (EMO) methods have
been proposed. Some methods evaluate candidate solutions by
using a Pareto dominance relation together with a crowding
distance to maintain the population’s diversity, which are
called Pareto dominance-based algorithms. Non-dominated
Sorting Genetic Algorithm (NSGA-II) [4], Strength Pareto
Evolutionary Algorithm (SPEA2) [5], OMOPSO [6], and
Multi-objective Differential Evolution (MODE) [7] are well-
known representatives of this type of EMO algorithms. Pareto
dominance-based algorithms work well on continuous multi-
objective problems having two or three objectives but not on
combinatorial problems. For example, it is difficult for them
to find non-dominated solutions on the edges of the Pareto
front for knapsack problems [8]. A similar issue occurs in
feature selection where only a few non-dominated solutions
around the center of the Pareto front are obtained [9]. This
is probably because the crowding distance has only a small
effect in comparison with the Pareto dominance in the case of
two or three objectives. Thus the population loses its diversity
quickly in an early state of evolution [10].

In contrast to Pareto dominance-based algorithms,
decomposition-based EMO has a good search ability for
combinatorial multi-objective problems [11]. It works by
decomposing a multi-objective problem into a number of
single-objective sub-problems and recombines the results.
Decomposition-based algorithms often achieve better
diversity than Pareto dominance-based algorithms, are easier
to integrate with local search mechanisms [10], and may
cope better with problems having many objectives [12] or
complicated Pareto fronts [13].

MOEA/D (Multi-objective Evolutionary Algorithm based
on Decomposition) [14] is a representative of decomposition-
based EMO algorithms. Standard MOEA/D decomposes a
multi-objective problem to a number of scalar sub-problems
using a set of weight vectors. Each weight vector defines a
scalar sub-problem whose optimal solution will be a Pareto
optimal solution to the original problem. A good set of weight
vectors can generate a reasonable approximation of the Pareto
front. However, defining an appropriate set of weight vectors
is a difficult task in MOEA/D since it depends strongly on
the shape of the Pareto front. Ishibuchi et al. [15] showed that
if the Pareto front and the hyperplane on which the weight
vectors are generated have the same or a similar shape, a set of
well-distributed solutions on the Pareto front can be obtained.
However, when the weight vectors are not well defined (the



2

corresponding reference line has no intersection with the
Pareto front), the performance deteriorates. Many attempts
have been made to adjust weight vectors dynamically during
the evolutionary process to cope with different complicated
Pareto front shapes [16], [17]. However, most approaches
depend on the Pareto front consisting of continuous regions
(if not being fully continuous). It is not clear how they can be
made to work on problems with discrete Pareto fronts. Fur-
thermore, the use of weight vectors depends on the objectives
being in conflict and having roughly equal importance so that
the weights can represent the trade-off.

Feature selection has a discrete Pareto front, a strong
preference for the classification accuracy over the number of
features, and the two objectives are not always conflicting
with each other. Therefore, it is necessary to design a new
decomposition strategy for MOEA/D to achieve feature se-
lection. Our preliminary work [18] proposed a new way of
applying MOEA/D to feature selection using a different way
of decomposing a multi-objective problem based on reference
points rather than weight vectors. The reference points were
selected in the space of feature set sizes.

Goal: The overall goal of this paper is to develop a
new strategy for MOEA/D to decompose a feature selection
problem with an expectation of obtaining a diverse set of non-
dominated feature subsets, which achieves better classification
performance than using all features. In the proposed decom-
position strategy, multiple reference points are used instead
of multiple weight vectors. Based on the new decomposition,
static and dynamic reference points methods are developed
to identify conflicting regions, which are then focused on by
allocating more resources to achieve better feature subsets.
Both static and dynamic multiple reference points algorithms,
called MOEA/D-STAT and MOEA/D-DYN, respectively, are
compared with a standard MOEA/D algorithm and four Pareto
dominance-based algorithms on 12 real-world datasets and five
gene expression datasets of varying difficulties. Specifically,
we will investigate:

• whether MOEA/D-STAT and MOEA/D-DYN can evolve
feature subsets that achieve better performance than using
all features,

• whether decomposition with multiple reference points
can help MOEA/D to improve the solution’s quality and
obtain better approximation of the Pareto front than the
multiple weight vectors decomposition,

• whether the new decomposition strategy could generate
more diverse feature subsets with various numbers of
features than four representatives of Pareto dominance-
based algorithms, and

• whether the dynamic strategy can recognize the conflict-
ing regions and further improve the quality of evolved
feature subsets.

The main contribution of this work is a new dynamic
strategy to allocate reference points that identifies and focuses
on conflicting regions. To the best of our knowledge, this is
the first study able to automatically analyze partially conflict-
ing relationships between objectives. This is also the main
difference between this work and our preliminary work [18].

We also propose a repair mechanism for duplicated solutions,
which enhances the population diversity. A deep analysis on
different real-world problems is conducted to explain why the
proposed decomposition results in better solution sets. We also
examine the scalability of the proposed decomposition on gene
expression datasets containing thousands of features. The re-
sults demonstrate high scalability of the proposed algorithms.

II. BACKGROUND

A. Multi-objective optimization problems

In a multi-objective problem, two or more conflicting objec-
tives are optimized simultaneously. An o-objective minimiza-
tion problem can be written as follows.

Minimize f(x) = (f1(x), f2(x), ..., fo(x)) (1)

subject to gi(x) ≤ 0, i = 1, 2, ..., k

hi(x) = 0, i = 1, 2, ..., l

where f(x) is a vector of objectives, fi(x) is the ith objective,
x is a decision vector, gi(x) and hi(x) are the constraint
functions of the problem.

The quality of a solution is based on the trade-off between
the objectives. A solution y is better than a solution z if:

∀i: fi(y) ≤ fi(z) and ∃j: fj(y)<fj(z) (2)

It can be said that y dominates z (assuming the smaller the
better). If a solution is not dominated by any other feasible
solutions, the solution is called a Pareto optimal solution. The
set of all Pareto optimal solutions forms a trade-off surface in
the objective space, which is called the Pareto front. The task
of an EMO algorithm is to evolve a set of well-distributed
non-dominated solutions, which is a good approximation of
the Pareto front. Feature selection can be considered a two-
objective minimization problem, in which the number of
features and the classification error rate need to be minimized.

B. MOEA/D

MOEA/D [14] is an EMO framework that treats a multi-
objective problem as a set of sub-problems. In the standard
MOEA/D framework, each sub-problem is a single-objective
problem and has a corresponding weight vector w, which is
used to define its own fitness function. Each sub-problem has
a candidate solution to find an optimal solution, so the number
of decomposed single-objective sub-problems is equal to the
population size. The sub-problems can be multi-objective
problems but simpler than the original problem, which is the
main idea of MOEA/D-M2M [19]. In MOEA/D-M2M, a set
of vectors is used to divide the original objective space into a
number of smaller sub-objective spaces. A part of the Pareto
front in each sub-space is expected to be easier to approximate.

Neighborhood is an essential property of MOEA/D. Each
sub-problem has T sub-problems as its neighbors. The distance
between the weight vectors defines the neighborhood relation.
It is expected that the solutions of neighboring sub-problems
should be similar so that each sub-problem can improve its
solution by using information from its neighbors.
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In the standard MOEA/D framework, given an o-
objectives problem, each weight vectors has o elements, w
= (w1, w2, ..., wo), which satisfies the following conditions:

o∑
i=1

wi = 1 and wi ∈
{
0,

1

N
,
2

N
, ...,

N

N

}
(3)

where N is a predefined positive integer. Following this
method, the number of weight vectors is Co−1

N+o−1, which is a
large number when o, the number of objectives, is large [20].
One can apply other strategies to generate weight vectors. For
two-objective problems such as feature selection, N is the
number of sub-problems, which is also the population size
[14]. There are various ways to aggregate multiple objectives
into a single scalar function, in which Weighted Sum, Tcheby-
cheff and Penalty-based Boundary Intersection (PBI) are three
common approaches [21]. In Tchebycheff and PBI, a reference
point is needed to define a reference line for a sub-problem.

C. Related work on EMO for feature selection

EC has been widely applied to multi-objective feature
selection. Mukhopadhay et al. [22] utilized NSGA-II with
a SVM classification algorithm to identify miRNA markers.
Both feature subsets and SVM’s parameters were encoded
which identified miRNA related to cancers. Leandro et al. [23]
applied a multi-objective GA (MOGA) to perform feature se-
lection for face recognition. There were three objectives, which
were the aggregation of the classification accuracy and the
feature subset size, the number of selected coefficients, and the
mutual information between selected features. The solutions
found by MOGA selected fewer features and achieved similar
accuracies to those found by single-objective GAs. Among EC
techniques, GA-based multi-objective algorithms are the most
popular. However, those studies simply applied GAs without
considering the characteristics of feature selection [3].

PSO is also widely applied to feature selection. Xue et
al. [24] proposed the first multi-objective PSO (MOPSO)
algorithm for feature selection, which was superior to NSGA-
II, SPEA2 and PAES2 on feature selection. Later, Nguyen
et al. [25] improved the archive’s solutions in MOPSO by
applying three local search operators: Inserting, Removing and
Swapping. The algorithm selected a smaller number of features
and achieved similar or better classification performance than
CMDPSOFS [24]. Recently, a multi-objective Differential
Evolution (MODE) based feature selection algorithm was
developed by Xue et al. [26]. During the evolutionary process,
if the population size exceeded its limit, solutions with lower
dominance levels were removed.

Most of the current multi-objective feature selection stud-
ies used Pareto dominance-based algorithms, which usually
focused on the center of the Pareto front. The MOEA/D
framework can address this problem. To the best of our
knowledge, Paul et al. [27] proposed the first filter MOEA/D
based feature selection algorithm, which considered inter-class
and intra-class distance measures as two conflicting objectives.
However, the fronts evolved by MOEA/D and NSGA-II were
not compared using any performance indicator. In addition,
MOEA/D was applied directly to feature selection without
considering characteristics of feature selection.

(a) Balance (b) Towards f1 (c) Towards f2

Fig. 1: Effect of bias Pareto fronts on MOEA/D.

The first characteristic of feature selection is its unknown
Pareto front. Therefore, defining weight vectors in feature
selection is a challenging task. A simple example is illustrated
in Fig. 1, where the task is to minimize both objectives, f1
and f2, and the green dots show the best solutions for the
weight vectors. When the Pareto front is biased towards f1
(Fig. 1(b)) or f2 (Fig. 1(c)), using a set of evenly distributed
weight vectors does not work well. In both cases, a number
of weight vectors are wasted since they do not contribute any
solution. More solutions on the edge of the Pareto front can be
obtained if the wasted weight vectors are located near the the
edge. Several works attempted to update weight vectors based
on the densities of regions to preserve the population diversity
[28], [29]. However, they require additional computational cost
to adaptively adjust the weight vector set. Although they are
tested on numeric problems having irregular Pareto fronts,
none of the problems has a front as highly discontinuous as
feature selection. Instead of adaptively adjusting weight vec-
tors, this work develops a new decomposition mechanism for
feature selection, which reduces the dependency on the Pareto
front shape and copes well with the front’s discontinuity.

Another characteristic of feature selection is the complicated
relationship between its two objectives. Firstly, the objective
of reducing the classification error has higher priority than
reducing the number of selected features. Secondly, the two
objectives are not always in conflict. Therefore, some parts of
a Pareto front on the conflicting regions are more difficult to
approximate than other parts on the non-conflicting regions.
In standard MOEA/D, all sub-problems are treated equally,
and they usually receive the same amount of computational
resource [21]. However, it is shown that some parts of a
Pareto front can be more challenging to approximate than
others [30]. It is natural to allocate resources differently
to different sub-problems (weight vectors) with respect to
their difficulties, which results in better efficiency [31]. A
similar question appears in feature selection. Possibly, better
Pareto front approximations can be achieved by putting more
efforts on the conflicting regions rather than evenly spending
resources on both conflicting and non-conflicting regions.

This paper addresses the above limitations by developing a
decomposition mechanism that helps MOEA/D to cope with
the characteristics of feature selection. It is expected that the
proposed algorithm results in a diverse set of non-dominated
feature subsets with better classification performance.

III. PROPOSED ALGORITHMS

This section starts by listing characteristics of feature se-
lection that illustrate difficulties when applying MOEA/D to
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(a) Weight vector for FS (b) Not always conflicting

Fig. 2: Characteristics of Feature Selection.

feature selection. It then shows how to use multiple reference
points to decompose a feature selection problem.

A. Characteristics of feature selection

The task of feature selection is to reduce the classification
error rate (eRate) while selecting a small portion of the origi-
nal feature set (fRatio). eRate measures the ratio between the
number of wrongly classified instances and the total number
of instances (m). eRate is discrete and the interval between the
adjacent values (i.e. the granularity) is 1/m. Similarly, fRatio
is the ratio between the number of selected features and the
total number of original features n. fRatio is also discrete and
the interval between its adjacent values is 1/n. Therefore, the
Pareto front of feature selection is discrete. If weight vectors
are used to decompose feature selection, these vectors have to
be carefully selected, otherwise, there will be vectors which do
not correspond to any solution on the Pareto front as shown
by the dashed line in Fig. 2(a). Furthermore, although both
objectives are in the same range [0,1], they typically have
different granularity due to the difference between 1/m and
1/n. It has been shown that solving multi-objective problems
where the objectives have different granularity usually results
in imbalanced Pareto fronts [32].

The relationship between the two objectives in feature
selection makes it an unusually challenging multi-objective
problem. In feature selection, the classification performance
is usually given a higher priority. For example, if a feature
set selects 10% more features than the other feature set
but achieves 10% better accuracy, the first set is definitely
preferred. Furthermore, the two objectives are not always
in conflict. Removing irrelevant or redundant features may
improve the classification performance, which means that the
two objectives are not conflicting in some regions. However,
if all features in a feature set are relevant and complementary,
removing any feature degrades the classification performance.
Thus, after removing all irrelevant/redundant features, the two
objectives become mostly conflicting. In other words, there
might be a threshold feature ratio beyond which the two objec-
tives are mostly harmonious. Fig. 2(b) illustrates the situation,
in which each point is the best solution with the corresponding
feature ratio. As can be seen, only red points can form the
Pareto front while all green points are dominated by the
solution at the threshold feature ratio. It will be more effective
for a multi-objective algorithm to allocate more computational
efforts on regions with fRatio belows the threshold. However,
the threshold is problem dependent and not easy to identify.
In the following subsections, both static and dynamic multiple

Fig. 3: Multiple reference points in MOEA/D.

reference points strategies are introduced to address the above
characteristics of feature selection.

B. Decomposition with multiple reference points

In standard MOEA/D, the effectiveness of the weight vector
set depends on the shape of the Pareto front which is unknown
in feature selection. To alleviate the effect of the Pareto
front shape, we use multiple reference points to decompose
a multi-objective feature selection problem instead of using
multiple weight vectors. Specifically, we allocate a set of
R reference points on the fRatio axis. A reference point
placed at position refRatio on the fRatio axis represents an
idealized solution with an accuracy of 100% (i.e. 0% eRate)
using exactly (brefRatio ∗ nc) features where n is the total
number of the original features. In the MOEA/D search, there
will be one individual in the population for each reference
point, just as there is one individual for each weight vector
when the problem is decomposed using weight vectors. Fig.
3 shows a set of reference points marked by blue dots.
Using multiple reference points, the multi-objective feature
selection problem is decomposed into a sub-problem for each
reference point. The solution of a sub-problem for a reference
point at refRatio is the feature subset, whose size is at most
(nref = brefRatio∗nc). Such a feature subset will be on the
Pareto front. The search space of each sub-problem is smaller
than the original one since it is limited by nref .

In the proposed decomposition, the search space of a sub-
problem (S1) with a smaller nref (e.g., n1) is covered by
the search space of a sub-problem (S2) with a larger nref
(e.g., n2). Therefore, the two sub-problems, S1 and S2, may
have the same solution. However, this is not a problem but
actually beneficial. On the other hand, one could restrict S2 to
consider feature subsets whose sizes are in the range (n1,n2].
This would separate the search spaces of S1 and S2, so
they could not have the same solution. However, with the
separated search spaces, S2 might not contribute any solution
to the approximated Pareto front, which can affect the front’s
diversity [15]. More importantly, the separated search spaces
limit the assistance between different sub-problems, which is
an essential property of MOEA/D. Our decomposition does
not ensure that two sub-problems have distinct solutions, but
it satisfies the two above-mentioned desirable properties.

The fitness function of a candidate feature subset S to a
sub-problem is designed as follows.

fitnessS = eRateS+100∗max(|S|−nref , 0)+α∗fRatioS
(4)

where |S| is the number of selected features. The main task of
the sub-problem is to minimize the classification error eRateS ,
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which is the first objective of multi-objective feature selection
and represented by the first component. The second component
is a penalty factor to ensure the condition that the number
of selected features in S should not exceed nref . The last
component is related to the objective of reducing the number
of selected features. The coefficient α is used to control the
priority of the second objective in comparison with the first
objective. A large value of α increases the chance of selecting
a solution with a smaller number of features but a lower
classification accuracy. If α is set to 1, the two objectives
have the same priority. Since reducing the classification error
is the more important objective, α is usually smaller than 1.

A decomposition using weight vectors in a highly discon-
tinuous space may lead to a sub-problem with no solution, and
therefore may result in a very poor approximation of the Pareto
front. In contrast, a decomposition using reference points leads
to sub-problems that always have a solution from the Pareto
front, and therefore should always give a good approximation
of the true Pareto front. Because of the choice of the fitness
function, this decomposition also handles the strong preference
for classification performance in feature selection.

The idea of using multiple reference points in MOEA/D has
already been examined in some studies [33], [34]. However,
those algorithms update the reference points every generation
according to specific mechanisms. Our approach places the
reference points on the fRatio axis prior to the evolutionary
process. Moreover, there is no weight vector in the proposed
algorithm. These two differences make our algorithm simpler
than other multiple reference points EMO algorithms.

C. Reference points allocation

The previous subsection shows how multiple reference
points can be used to effectively decompose feature selection
despite its discrete Pareto front. This subsection describes how
the reference points are allocated on the fRatio axis. One way
is to fix locations of the reference points at the beginning,
which is called static allocation. A more advanced strategy
is to dynamically modify the locations, which is capable to
detect conflicting/non-conflicting regions.

1) Static allocation: In static allocation, the reference
points are uniformly placed on the fRatio axis and do not
change during the search. Specifically, given R reference
points, the position of the ith reference point is (i/R, 0).
Notice that there is no reference point at the location (0, 0)
since it defines an empty feature subset. For each sub-problem,
its neighbors are sub-problems whose reference points are
close to this sub-problem’s reference point. For example,
when the number of neighbors is 3, the neighborhood of
(3/R, 0) includes (2/R, 0), (3/R, 0) and (4/R, 0). In general,
we expect that the solutions of neighboring sub-problems will
be similar, which is an important requirement of MOEA/D.

2) Dynamic allocation: In feature selection, the two ob-
jectives are not always in conflict. In a non-conflicting region,
there can be at most one solution from the Pareto front. Evenly
distributing all reference points on the entire domain of the
fRatio axis might limit the performance of MOEA/D since
some reference points are wasted in non-conflicting regions.
We propose a dynamic mechanism that firstly identifies the

Fig. 4: Dynamic reference points example: fixed points are
green, moving points are red, dashed line shows the interval
that moving points are located in the corresponding iterations.

conflicting and non-conflicting regions, and then allocates
more reference points to the conflicting regions.

To achieve the above aim, the fRatio axis is divided into I
intervals all of the same length, 1/I . We assume that there
will be one interval containing the threshold feature ratio,
beyond which the two objectives are mostly not conflicting
(Fig. 2b). The R reference points are divided into F fixed
points and M moving points (R = F + M ). The F fixed
points are evenly located across the I intervals, shown by the
green points on Fig. 4. At the beginning, the M moving points
are all located on the first interval, and the locating mechanism
spreads the moving points while avoiding overlapping between
the two types of reference points as much as possible. After a
certain number of iterations defined by the division between
the maximum number of iterations and the number of intervals,
the moving points are re-allocated on the next interval. For
example, in Fig. 4, in the first 10 iterations, the three moving
points are located on the first interval. In the next 10 iterations,
the moving points are re-allocated to the second interval and so
on. The 10th, 20th... iterations are called boundary iterations,
since on these iterations the moving points are re-allocated.

The re-allocation process is continued until the algorithm
detects that the two objectives are potentially not conflicting
any more. As can be seen in Fig. 2(b), most solutions in
the potentially non-conflicting region (green) are dominated
by a solution in the conflicting region (red). Therefore, to
determine whether the two objectives are still conflicting in the
ith interval, the solution with the lowest classification error in
the interval is compared with all solutions from the previous
interval. If the solution from the ith interval is dominated by
a solution in the previous interval, the algorithm assumes the
two objectives are not conflicting in any interval from the
ith one. The moving points are then evenly allocated on all
the intervals prior to the ith one and their locations are not
changed until the evolutionary process is finished. An example
is given in Fig. 4, where after allocating moving points on the
third interval, the algorithm finds that the solution with the best
accuracy obtained by reference points in the third interval is
dominated by one of solutions from the second interval. This
is an indication that in the regions from the third interval, the
two objectives may not conflict. Thus the algorithm allocates
all moving points on the first and second intervals.

In the evolutionary process, the moving points are re-
allocated many times. However, Giagkiozis et al. [35] showed
that dynamic mechanisms are not always good since they may
cause divergence in the population. To avoid the divergence
but still preserve the population’s diversity, the re-allocation
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Algorithm 1 : Reduce size of an infeasible feature subset S
Input: Ranking of features selected in S

1: while |S| > nref do
2: remove the selected feature with the lowest accuracy

from S
3: end while

Algorithm 2 : Increase size of a feature subset S
Input: Ranking of features unselected in S

1: while |S| < nref do
2: add the unselected feature with the highest accuracy

to S
3: end while

process has to be done carefully. Firstly, the moving points are
re-allocated so that there will be the least overlap with the fixed
points because a diverse allocation usually leads to diverse
solutions on the Pareto front. Secondly, when reallocating
a reference point to a new value on the fRatio axis, the
algorithm attempts to preserve as much information from the
solution found for the sub-problem at the previous location
of the reference point. Therefore, the algorithm initializes the
reference point with a feature subset as close as possible to
the feature subset from the previous solution. Since the new
location requires a different number of features, the feature
subset from the previous solution must be “repaired”, which
will be discussed in the following subsection.

It should be noted that the dynamic mechanism does not
ensure that the threshold interval is found exactly. It just
needs to estimate possible regions in which the two objectives
are mostly conflicting and puts more effort (reference points)
on these regions. There are still some fixed reference points
locating in the other regions (i.e., possible non-conflicting
regions) just in case the estimation is not good enough. In
addition, these fixed points on non-conflicting regions usually
have large nref values, which may allow different features to
be introduced into solutions for neighboring reference points
with smaller nref values. This helps to prevent premature
convergence of the sub-problems in the conflicting regions.

D. Repair mechanism

All evolutionary algorithms create new candidate solutions
from current solutions. If a number of generated candidates are
infeasible, the search mechanism may waste a lot of search
time on exploring useless parts of the search space. One
option is to identify and remove all invalid candidates, but this
may lose valuable information contained in the candidates.
An alternative option is to “repair” an invalid candidate by
transforming it into a close valid solution, which has the
advantage of retaining information in the candidate, but may
be expensive if the repair mechanism is not efficient.

For sub-problems in the proposed MOEA/D based feature
selection algorithm, repair is particularly important because
each sub-problem corresponds to a small part of the search
space - the sub-space of features subsets whose size is close
to but not more than the nref of the reference point - and
it is difficult to ensure that new candidates are always within

the subspace. When the search mechanism creates a candidate
feature set S that is larger than nref , the repair mechanism
must remove (|S|−nref ) features in order to make it valid. The
mechanism chooses the (|S| − nref ) features with the lowest
individual classification accuracies (which are pre-calculated at
the start of the algorithm). This process is shown in Algorithm
1. A potential problem is that it may remove important features
that are strongly complementary to other features, even though
they are individually weak. However, this information about
complementary features is usually retained in the neighboring
sub-problems with larger nref values. The search mechanism
is able to re-select the removed features using information
from the neighboring subproblems.

Re-allocating reference points in the dynamic mechanism
is even more prone to creating invalid candidates since re-
allocating a reference point means changing its nref value.
If a reference point is re-allocated to a smaller nref value,
its current candidate feature subset is likely to be too large
for the new nref value, and features will be removed by the
same mechanism described above. If a reference point is re-
allocated to a larger nref , its candidate feature subset will still
be valid, but may be much smaller than the new nref value,
which is highly problematic because it is likely to be similar to
the candidates of subproblems with smaller reference points
and therefore will reduce the population diversity and limit
the ability to explore new feature combinations. The repair
process ranks all unselected features based on their individual
accuracies and sequentially add them to the candidate feature
subset until its size reaches nref . The re-allocating process
may require to decrease or increase the size of a feature subset,
which are shown in Algorithms 1 and 2, respectively.

E. Fixing duplicated feature subsets
One problem of the proposed decomposition approach is

that a feature subset for a reference point with a smaller nref
value can also become the solutions for reference points with
larger nref values. The duplicated feature subsets might cause
a low diversity and premature convergence. To avoid such
an undesirable situation, all duplicated sets from the larger
reference points are repaired. Since the reference points den-
sity on an interval is not high in the static strategy, randomly
adding unselected features to the duplicated subsets should be
sufficient. However, due to the dynamic allocation of moving
reference points, the reference points on a particular interval is
more dense. Duplicated feature subsets in the dynamic strategy
are replaced by randomly generated feature subsets.

F. Overall proposed algorithms
Figs. 5(a) and 5(b) show an overview of the static and

dynamic multiple reference points algorithms. In Fig. 5(a),
the blue parts are the essential differences in comparison
with the standard MOEA/D algorithm. The difference between
the dynamic mechanism and the static one is the moving
reference points re-allocation, marked by the green color in
Fig. 5(b). Note that the re-allocation is only performed when
the algorithm has not identified the threshold interval yet. Once
the threshold interval is found, the M moving reference points
are allocated to the conflicting intervals and no further re-
allocation is needed. Both algorithms use the same differential
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(a) Static multiple reference points strategy (MOEA/D-STAT).

(b) Dynamic multiple reference points strategy (MOEA/D-DYN).

Fig. 5: Overall multiple reference points MOEA/D algorithms.

evolution (DE) crossover and mutation operators, which is an
efficient approach to preserve the population diversity [14].

Algorithm 3 : Pesudo-code of MOEA/D-STAT

1: begin
2: for each feature, calculate its individual accuracy;

3: initialize R reference points: refPointi = (i ∗ 1

R
, 0)

where i = 1, ..., R;
4: find the set of T neighboring reference points of each

reference point;
5: each ith sub-problem’s neighboring set is denoted Bi;
6: randomly initialize the population P = (p1, p2, ..., pR)

where pi is the candidate solution of the ith sub-problem;
7: while maximum iteration is not reached do
8: for i=1,...,R do

9: Ne =

{
B(i) if rand < σ

P otherwise
10: randomly select two solutions from Ne to

generate a new solution y by using DE crossover
and mutation operators;

11: repair y if it selects more than nref features;
12: update solutions of neighboring sub-problems if y

is better than the solutions of sub-problems in terms
of the fitness values calculated by Eq. (4);

13: end for
14: repair duplicated feature subsets;
15: update the archive set;
16: end while
17: Output the archive set;
18: end

The pseudo-code of the static multiple reference points
MOEA/D for feature selection (MOEA/D-STAT) is shown in
Algorithm 3. Each individual is represented by a vector of
real numbers. The vector length is equal to the total number of
original features. Each entry corresponds to an original feature

and its value determines whether or not the corresponding
feature is selected. Specifically, the feature is chosen if the
entry’s value is greater than a threshold θ. σ is the probability
that a sub-problem selects its T neighboring sub-problems to
create a new solution. The Tchebycheff approach [14] is used
as a representative of standard MOEA/D to compare with the
proposed decomposition since it usually achieves better results
than the Weighted Sum approach [14] and it does not need to
specify a penalty factor like the PBI approach. In addition, the
Tchebycheff approach has good theoretical properties [36].

IV. EXPERIMENT DESIGN

A. Benchmark techniques

The proposed algorithms, MOEA/D-STAT and MOEA/D-
DYN, are compared with five well-known multi-objective
algorithms: standard MOEA/D, NSGA-II [4], SPEA2 [5],
OMOPSO [6], and MODE [7]. We also compare the proposed
algorithms with four classical feature selection algorithms:
mRMR (information-based) [37], reliefF (similarity-based)
[38], CFS (correlation-based) [39], and RFS (sparse learning-
based) [40]. The algorithms are examined on 12 UCI datasets
[41] from different real-world areas such as physic/chemistry
(Wine, Sonar, Musk1), finance (Australian, German), image
analysis (Vehicle), health (WBCD, Arrhythmia), speech recog-
nition (Isolet5), handwritten recognition (Multiple Features).
The selected datasets also have different numbers of features
(from 13 to 649), classes (from 2 to 16), and instances (from
178 to 7797) with an expectation that they are representative
samples of the problems that the proposed algorithms can
address. The dataset details can be seen in Table I.

Each algorithm is run 50 independent times. Each dataset
is divided into training and test sets with the proportions
of 70% and 30%, respectively. During the training process,
KNN with 10-fold cross-validation is applied to calculate the
classification error rate on the training set to avoid feature
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TABLE I: Datasets.

Dataset #Features #Classes #Instances
Wine 13 3 178
Australian 14 2 6650
Vehicle 18 4 946
German 24 2 1000
WBCD 30 2 569
Sonar 60 2 208
Hillvalley 100 2 606
Musk1 166 2 476
Arrhythmia 279 16 452
Madelon 500 11 4400
Isolet5 617 5 7797
MultipleFeatures 649 15 2000

selection bias where the selected features overfit the training
data. The evolved feature subsets are then evaluated on the
test set to obtain their testing accuracies. These settings are
commonly used in feature selection [24], [18].

To examine the performance of the six multi-objective
algorithms, the hypervolume indicator [42] and the inverted
generational distance (IGD) indicator [43] are used. In each
run, an algorithm obtains two Pareto front approximations,
which are “training Pareto front” and “testing Pareto front”.
After 50 executions, each algorithm has two sets of metric
values based on the training and test sets, respectively. To
calculate the two indicators, it is necessary to know the true
Pareto front, but it is not known in feature selection. Therefore,
the true Pareto front is approximated by the non-dominated
solutions obtained from the union of all solutions generated
by 50 independent runs of the six algorithms. Here, the
hypervolume value of a front is calculated by its inverted front,
which is implemented in the JMetal package [44]. Therefore,
the larger the hypervolume value, the better the algorithm. A
significance test, Wilcoxon test with its significance level set to
0.05, is used to compare the performance between MOEA/D-
STAT, MOEA/D-DYN and the benchmark algorithms.

For each algorithm the attainment surface (i.e., non-
dominated surface) corresponds to the median hypervolume
value is obtained, which is called a median front. Note that
although the median front can give a good visualization, the
indicator values are more reliable to compare different algo-
rithms. The reason is that the indicator values are calculated
based on all the solution sets generated by 50 independent runs
of each algorithm whereas the median fronts in figures only
show the median non-dominated solution set obtained from a
single run. We visualize the median fronts to provide a visual
intuition about the search performance of each algorithm.

B. Parameter settings

In general, choosing a proper parameter setting for an EMO
algorithm is a difficult task since it is problem-dependent.
On the basis of several trial experiments on the Musk1
dataset using various parameter choices as suggested in [14],
the parameter values for the proposed algorithms are set as
follows. The number of neighbors T is set to R/10, which is
much smaller than the population size to preserve diversity.
However, the smallest value of T is 4 to ensure the diversity
between neighboring sub-problems. The maximum number of
solutions replaced by a newly generated solution is set to 1
which is much smaller than T [14]. The proposed algorithms

use the DE crossover (crossover rate is 0.6, scaling factor
F is 0.7) and polynomial mutation (mutation rate is 1/n).
The probability of selecting parents from the neighboring sub-
problems, σ, is 0.85. α in Eq. (4) is set to 0.01, which shows
a very weak preference for a smaller feature subset among the
feature subsets with the same classification error and different
numbers of features. More analysis of α can be seen in Section
V.F. The settings of NSGA-II, SPEA2 and OMOPSO follow
the recommended setting from their original papers, which are
default settings in the JMetal package [44].

The dynamic strategy has two main parameters: M -
the number of moving reference points, I - the number
of intervals. Based on experiments, M is set to 0.4 ∗ R,
which ensures a significant effect of moving reference points
while maintaining enough fixed reference points to explore
all intervals. Different values of M are examined and the
results show that the proposed algorithm is not sensitive to
M . More details can be seen in the supplementary material1.
When the number of features is less than 20, the number
of intervals is set to 9. Otherwise, the number of intervals
is set to 4. On datasets having less than 20 features, since
the search space corresponding to each interval is not large,
it is fine to have 9 intervals, which ensures a fine-grained
intervals leading to a more accurate estimation of the non-
conflicting region. However, on datasets with large numbers
of features, the search space corresponding to each interval
is much larger, which requires more efforts (the number of
iterations and reference points) to be well explored. Given a
smaller number of intervals, the moving points can explore an
interval in a larger number of iterations. Therefore, the number
of intervals on large datasets is set to 4, a small value.

The number of nearest neighbors in KNN is set to 5 to
avoid noisy instances while still maintaining its efficiency. The
maximum number of iterations are 200. The population size is
set to the number of features due to the exponential increase
of the search space size with respect to the number of features.
However, the population size is bounded by 200 to avoid high
computational costs. The threshold θ is set to 0.6 so that the
algorithms start with slightly small numbers of features.

V. RESULTS

The average IGD and hypervolume values of the six algo-
rithms on the training and test sets are shown in Tables II-V.
The two signs besides the average values of the five bench-
mark algorithms show significance test results compared with
the two proposed algorithms, MOEA/D-STAT and MOEA/D-
DYN, respectively. “↑”, “↓”, “◦” mean that the corresponding
benchmark algorithm is significantly better than, worse than or
has no significant difference from MOEA/D-STAT (MOEA/D-
DYN), respectively. The single sign in MOEA/D-STAT’s col-
umn shows the comparison result with MOEA/D-DYN.

The median fronts of the algorithms on the test sets are
shown in Fig. 7. In each sub-figure, the two numbers inside
the brackets show the number of the original features and the
training or testing error when using all features. The horizontal
and vertical axes represent fRatio and eRate, respectively.

1Online Supplementary Material: https://ecs.victoria.ac.nz/foswiki/pub/
Groups/ECRG/OnlineSupplimentaryMaterials/MOEAD FS.pdf
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TABLE II: IGD on training sets.
Dataset NSGA-II MODE SPEA2 OMOPSO MOEAD MOEA/D-STAT MOEA/D-DYN
Wine 0.049±0.010 (↓ ↓) 0.051±0.016 (↓ ↓) 0.036±0.011 (↓ ↓) 0.027±0.008 (↓ ↓) 0.036±0.011 (↓ ↓) 0.018±0.013 (◦) 0.023±0.011
Australian 0.029±0.015 (↓ ↓) 0.057±0.019 (↓ ↓) 0.030±0.013 (↓ ↓) 0.010±0.010 (↓ ↓) 0.024±0.016 (↓ ↓) 0.003±0.007 (◦) 0.002±0.005
Vehicle 0.021±0.011 (↓ ↓) 0.036±0.010 (↓ ↓) 0.026±0.010 (↓ ↓) 0.015±0.010 (↓ ↓) 0.020±0.012 (↓ ↓) 0.004±0.003 (↑) 0.006±0.004
German 0.056±0.015 (↓ ↓) 0.049±0.011 (↓ ↓) 0.051±0.017 (↓ ↓) 0.045±0.017 (↓ ↓) 0.037±0.021 (↓ ↓) 0.023±0.018 (◦) 0.025±0.021
WBCD 0.012±0.011 (↓ ↓) 0.080±0.028 (↓ ↓) 0.012±0.011 (↓ ↓) 0.007±0.010 (◦ ↓) 0.015±0.010 (↓ ↓) 0.009±0.009 (↓) 0.000±0.002
Sonar 0.016±0.003 (↓ ↓) 0.072±0.009 (↓ ↓) 0.015±0.003 (↓ ↓) 0.015±0.003 (↓ ↓) 0.014±0.003 (↓ ↓) 0.010±0.002 (↓) 0.009±0.003
Hillvalley 0.005±0.002 (↑ ↓) 0.083±0.005 (↓ ↓) 0.006±0.002 (↑ ↓) 0.007±0.003 (◦ ↓) 0.006±0.001 (◦ ↓) 0.006±0.001 (↓) 0.005±0.001
Musk1 0.008±0.001 (↓ ↓) 0.060±0.004 (↓ ↓) 0.007±0.002 (◦ ◦) 0.010±0.002 (↓ ↓) 0.007±0.001 (◦ ◦) 0.007±0.001 (↑) 0.007±0.001
Arrhythmia 0.003±0.001 (↓ ↓) 0.082±0.003 (↓ ↓) 0.002±0.001 (↓ ↓) 0.003±0.001 (↓ ↓) 0.002±0.000 (↓ ↓) 0.002±0.000 (↓) 0.002±0.000
Madelon 0.024±0.001 (↓ ↓) 0.094±0.003 (↓ ↓) 0.023±0.001 (↓ ↓) 0.018±0.005 (↓ ↓) 0.013±0.003 (↓ ↓) 0.007±0.001 (↓) 0.004±0.001
Isolet5 0.005±0.001 (↓ ↓) 0.050±0.001 (↓ ↓) 0.003±0.001 (↓ ↓) 0.004±0.001 (↓ ↓) 0.001±0.000 (↓ ↓) 0.001±0.000 (↓) 0.001±0.000
MultipleFeatures 0.008±0.001 (↓ ↓) 0.069±0.002 (↓ ↓) 0.007±0.001 (↓ ↓) 0.010±0.003 (↓ ↓) 0.004±0.001 (↓ ↓) 0.003±0.000 (↓) 0.001±0.000

TABLE III: IGD on test sets.
Dataset NSGA-II MODE SPEA2 OMOPSO MOEAD MOEA/D-STAT MOEA/D-DYN
Wine 0.081±0.020 (↓ ↓) 0.074±0.031 (↓ ↓) 0.014±0.015 (◦ ↓) 0.009±0.002 (◦ ◦) 0.018±0.014 (↓ ↓) 0.009±0.006 (◦) 0.008±0.000
Australian 0.044±0.031 (↓ ↓) 0.061±0.019 (↓ ↓) 0.049±0.034 (↓ ↓) 0.024±0.015 (↓ ↓) 0.037±0.029 (↓ ↓) 0.016±0.007 (◦) 0.018±0.004
Vehicle 0.020±0.009 (↓ ◦) 0.036±0.014 (↓ ↓) 0.024±0.013 (↓ ◦) 0.023±0.010 (↓ ◦) 0.023±0.013 (↓ ◦) 0.017±0.009 (↑) 0.022±0.009
German 0.068±0.015 (◦ ◦) 0.056±0.010 (↑ ◦) 0.070±0.017 (◦ ◦) 0.073±0.018 (◦ ↓) 0.067±0.021 (◦ ◦) 0.064±0.027 (◦) 0.063±0.023
WBCD 0.007±0.009 (◦ ↓) 0.113±0.036 (↓ ↓) 0.008±0.011 (◦ ↓) 0.003±0.003 (↑ ◦) 0.008±0.010 (◦ ↓) 0.007±0.009 (↓) 0.003±0.002
Sonar 0.032±0.009 (◦ ◦) 0.122±0.014 (↓ ↓) 0.029±0.006 (◦ ◦) 0.028±0.007 (↑ ↑) 0.029±0.007 (◦ ◦) 0.031±0.005 (◦) 0.031±0.005
Hillvalley 0.011±0.004 (↑ ◦) 0.143±0.009 (↓ ↓) 0.011±0.002 (↑ ↑) 0.013±0.003 (↑ ◦) 0.013±0.004 (↑ ◦) 0.015±0.004 (↓) 0.013±0.004
Musk1 0.021±0.003 (↓ ↓) 0.078±0.005 (↓ ↓) 0.020±0.003 (↓ ↓) 0.022±0.004 (↓ ↓) 0.018±0.003 (↓ ↓) 0.015±0.004 (◦) 0.015±0.004
Arrhythmia 0.005±0.001 (↓ ↓) 0.127±0.004 (↓ ↓) 0.005±0.001 (◦ ↓) 0.006±0.002 (↓ ↓) 0.004±0.001 (◦ ◦) 0.005±0.001 (↓) 0.004±0.001
Madelon 0.048±0.001 (↓ ↓) 0.134±0.003 (↓ ↓) 0.047±0.003 (↓ ↓) 0.036±0.011 (↓ ↓) 0.019±0.006 (↓ ↓) 0.014±0.002 (↓) 0.008±0.001
Isolet5 0.009±0.001 (↓ ↓) 0.068±0.002 (↓ ↓) 0.006±0.001 (↓ ↓) 0.008±0.002 (↓ ↓) 0.002±0.001 (↓ ↓) 0.001±0.000 (↓) 0.001±0.000
MultipleFeatures 0.011±0.001 (↓ ↓) 0.085±0.002 (↓ ↓) 0.010±0.001 (↓ ↓) 0.014±0.003 (↓ ↓) 0.005±0.001 (↓ ↓) 0.005±0.001 (↓) 0.001±0.000

TABLE IV: Hypervolume on training sets.
Dataset NSGA-II MODE SPEA2 OMOPSO MOEAD MOEA/D-STAT MOEA/D-DYN
Wine 0.751±0.056 (↓ ↓) 0.752±0.077 (↓ ↓) 0.870±0.020 (↓ ↓) 0.876±0.001 (↓ ↓) 0.872±0.005 (↓ ↓) 0.877±0.001 (◦) 0.877±0.001
Australian 0.778±0.015 (↓ ↓) 0.662±0.065 (↓ ↓) 0.782±0.008 (↓ ↓) 0.794±0.003 (◦ ↓) 0.783±0.019 (↓ ↓) 0.794±0.002 (↓) 0.795±0.000
Vehicle 0.795±0.009 (↓ ↓) 0.663±0.059 (↓ ↓) 0.794±0.010 (↓ ↓) 0.801±0.002 (◦ ↓) 0.796±0.006 (↓ ↓) 0.801±0.001 (↓) 0.802±0.001
German 0.709±0.013 (↓ ↓) 0.556±0.046 (↓ ↓) 0.707±0.016 (↓ ↓) 0.717±0.004 (◦ ↓) 0.713±0.006 (↓ ↓) 0.718±0.004 (↓) 0.719±0.003
WBCD 0.916±0.009 (↓ ↓) 0.755±0.054 (↓ ↓) 0.917±0.006 (↓ ↓) 0.919±0.001 (◦ ↓) 0.918±0.002 (↓ ↓) 0.920±0.001 (↓) 0.920±0.000
Sonar 0.871±0.014 (↓ ↓) 0.553±0.031 (↓ ↓) 0.867±0.013 (↓ ↓) 0.867±0.012 (↓ ↓) 0.869±0.012 (↓ ↓) 0.887±0.007 (◦) 0.889±0.008
Hillvalley 0.617±0.007 (↓ ↓) 0.372±0.011 (↓ ↓) 0.616±0.004 (↓ ↓) 0.611±0.007 (↓ ↓) 0.614±0.007 (↓ ↓) 0.620±0.004 (↓) 0.625±0.003
Musk1 0.919±0.010 (↓ ↓) 0.587±0.017 (↓ ↓) 0.924±0.007 (↓ ↓) 0.898±0.014 (↓ ↓) 0.929±0.005 (↓ ↓) 0.933±0.004 (◦) 0.932±0.004
Arrhythmia 0.940±0.006 (↓ ↓) 0.580±0.012 (↓ ↓) 0.949±0.005 (↓ ↓) 0.940±0.012 (↓ ↓) 0.955±0.002 (↓ ↓) 0.957±0.001 (◦) 0.957±0.001
Madelon 0.874±0.011 (↓ ↓) 0.461±0.010 (↓ ↓) 0.883±0.009 (↓ ↓) 0.863±0.018 (↓ ↓) 0.849±0.011 (↓ ↓) 0.891±0.004 (↓) 0.896±0.003
Isolet5 0.922±0.010 (↓ ↓) 0.575±0.009 (↓ ↓) 0.944±0.010 (↓ ↓) 0.927±0.012 (↓ ↓) 0.973±0.004 (↓ ↓) 0.988±0.000 (↓) 0.991±0.000
MultipleFeatures 0.951±0.007 (↓ ↓) 0.651±0.008 (↓ ↓) 0.960±0.008 (↓ ↓) 0.933±0.016 (↓ ↓) 0.974±0.006 (↓ ↓) 0.991±0.000 (↓) 0.994±0.000

TABLE V: Hypervolume on test sets.
Dataset NSGA-II MODE SPEA2 OMOPSO MOEAD MOEA/D-STAT MOEA/D-DYN
Wine 0.754±0.058 (↓ ↓) 0.757±0.085 (↓ ↓) 0.894±0.029 (↓ ↓) 0.904±0.003 (◦ ◦) 0.890±0.019 (↓ ↓) 0.903±0.006 (◦) 0.904±0.000
Australian 0.747±0.061 (↓ ↓) 0.663±0.068 (↓ ↓) 0.739±0.065 (↓ ↓) 0.781±0.022 (↓ ↓) 0.760±0.055 (↓ ↓) 0.791±0.006 (◦) 0.790±0.004
Vehicle 0.791±0.011 (↓ ↓) 0.669±0.061 (↓ ↓) 0.788±0.012 (↓ ↓) 0.797±0.004 (↑ ◦) 0.793±0.009 (◦ ↓) 0.795±0.004 (↓) 0.798±0.003
German 0.669±0.022 (↓ ↓) 0.531±0.046 (↓ ↓) 0.671±0.018 (↓ ↓) 0.678±0.010 (◦ ◦) 0.673±0.014 (↓ ↓) 0.680±0.007 (◦) 0.680±0.006
WBCD 0.909±0.012 (◦ ↓) 0.745±0.054 (↓ ↓) 0.908±0.014 (◦ ↓) 0.914±0.001 (↑ ◦) 0.908±0.012 (◦ ↓) 0.912±0.005 (↓) 0.914±0.000
Sonar 0.774±0.031 (↓ ↓) 0.552±0.036 (↓ ↓) 0.782±0.022 (↓ ↓) 0.790±0.027 (◦ ◦) 0.790±0.027 (◦ ◦) 0.798±0.021 (◦) 0.793±0.022
Hillvalley 0.595±0.013 (↑ ◦) 0.381±0.013 (↓ ↓) 0.598±0.010 (↑ ◦) 0.589±0.012 (◦ ↓) 0.593±0.012 (◦ ◦) 0.590±0.010 (↓) 0.598±0.011
Musk1 0.846±0.019 (↓ ↓) 0.576±0.017 (↓ ↓) 0.857±0.015 (↓ ↓) 0.834±0.025 (↓ ↓) 0.860±0.013 (↓ ↓) 0.868±0.010 (◦) 0.872±0.010
Arrhythmia 0.934±0.007 (↓ ↓) 0.582±0.012 (↓ ↓) 0.943±0.005 (↓ ↓) 0.935±0.012 (↓ ↓) 0.951±0.002 (↓ ↓) 0.952±0.002 (◦) 0.952±0.002
Madelon 0.860±0.011 (↓ ↓) 0.466±0.011 (↓ ↓) 0.869±0.009 (↓ ↓) 0.857±0.016 (↓ ↓) 0.849±0.011 (↓ ↓) 0.883±0.004 (↓) 0.886±0.004
Isolet5 0.919±0.011 (↓ ↓) 0.574±0.009 (↓ ↓) 0.941±0.010 (↓ ↓) 0.924±0.013 (↓ ↓) 0.971±0.004 (↓ ↓) 0.985±0.001 (↓) 0.989±0.001
MultipleFeatures 0.947±0.007 (↓ ↓) 0.648±0.008 (↓ ↓) 0.956±0.008 (↓ ↓) 0.929±0.016 (↓ ↓) 0.971±0.006 (↓ ↓) 0.987±0.001 (↓) 0.990±0.001

Four datasets are selected as representatives of small (Vehicle),
medium (Musk1) and large (Madelon, Isolet5) datasets due
to page limit. The patterns are similar on the other datasets.
Note that in the figure, MODE is not shown since its obtained
median fronts contain feature subsets with large numbers
of features and high classification errors, which makes the
differences between other algorithms difficult to be visible.

A. Comparison with the case of using all features

As can be seen from Figs. 6 and 7, on all datasets, the two
proposed algorithms evolve feature subsets containing at most
60% of the original features. There are at least three feature
subsets that are better than using all features. Especially, on
Madelon, most subsets selected by the two algorithms achieve

better classification performance than using all features while
selecting less than 5% of the original features.

The results suggest that on all datasets, applying multiple
reference points to MOEA/D based feature selection can
select a small number of features while still achieve better
performance than using all features.

B. MOEA/D-STAT vs other EMO methods

On the training set, as shown in Tables II and IV,
MOEA/D-STAT achieves significantly better indicator values
on most datasets. Among the benchmark algorithms, SPEA2
achieves the best hypervolume values on the medium and
large datasets while OMOPSO has the best performance
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Fig. 6: Median fronts on training sets.
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Fig. 7: Median fronts on test sets.

●●● SPEA2 STAT DYN

●
●

●●

●
● ●

●●
● ●● ●

● ●
●

●●●
●

●
●

●●●●
●

●

●● ●
●●

●
●

● ●
● ●

●
● ●●

●

●

● ● ●
●

●
●
● ●

●
●●

●●●

●
● ●●

●●
●

●

●

●
●

●
●

●●●
●● ●●

● ●
●

●

● ●

●
●

●●● ●

●

●

●

●
●

●

●

●
●●● ●

●

●●
●

● ●
●

●

●

●
●● ●

●
●●

●
●

●

●●
●● ●● ●●● ●

●●
●●

●
●●

●

●

●
● ●

●
●

●

●
● ●● ●●

● ●
●● ●●

● ●● ●
●

●
● ●

●
●

●
●

●

●●
●

●

●●

●
● ● ●●
●

●

● ●

●
●●●●

●●

●●
● ●● ●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRatio

eR
at

e

Iteration  40

●
●
●●

●
● ●

●●
● ●● ●
● ●

●

●●● ●

●
●
●●●●

●

●

●● ●
●●

●
●

● ●
● ●

●
● ●●

●

●

● ● ●
●

●
●
● ●

●
●●

●●●

●
● ●●

●●
●

●

●

●
●
●

●
●●●

●● ●●
● ●

●
●

● ●

●
●

●●● ●

●

●

●

●
●

●

●

●
●●● ●

●

●●
●

● ●
●

●

●

●
●● ●

●
●●

●
●

●

●●
●● ●● ●●● ●

●●
●●

●
●●

●

●

●
● ●

●
●

●

●
● ●● ●●

● ●
●● ●●
● ●● ●

●

●
● ●

●
●

●
●

●

●●
●

●

●●

●
● ● ●●
●

●

● ●

●
●●●●

●●

●●
● ●● ●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRate

eR
at
e

Iteration  40

● ●●●●● ●●●
●●● ●●

●
● ●●●●●
●●

●

●●
●

● ●

●
● ●● ●

●●

●●
●

●
●
●

●
●

●

●● ●● ●
●

●● ●
● ●

● ●
●●●●

●
●● ●

●●
●

●

●●

●

● ●
●●

●

●
●

● ●

●

●●

●

●●
●●

●

●●
●

●
●●●●● ●

●
●

●
●

●
●

●●

●
●
● ●●●

●
●

●●●●
● ●
●

● ●●● ●
● ●

●

●●●
●●

●

● ●●

●

●●●●
●
●

●

●

●
●

●●●●
●

● ●●
●

●● ●
●● ●● ●●●● ● ● ●

●● ●●

●

●
●

●

●

●●
●

● ●●
●●

● ●

●

●
●

●
● ●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRatio

eR
at

e

Iteration  100

● ●●●●● ●●●
●●● ●●

●
● ●●●

●●
●●

●

●●●

● ●

●
● ●● ●

●●

●●
●

●
●
●

●
●

●

●● ●● ●
●
●● ●

● ●
● ●

●●●●

●
●● ●

●●
●
●

●●

●

● ●
●●

●

●
●

● ●

●

●●

●

●●
●●

●

●●
●

●
●●●●● ●

●
●

●
●
●

●
●●

●
●
● ●●●

●
●

●●●●
● ●
●

● ●●● ●
● ●

●

●●●
●●

●

● ●●

●

●●●●
●
●

●

●

●
●

●●●●
●

● ●●
●

●● ●
●● ●● ●●●● ● ● ●

●● ●●

●

●
●

●

●

●●
●
● ●●

●●
● ●

●

●
●

●
● ●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRate

eR
at
e

Iteration  100

● ●
●
●●● ●●

●●●
●
● ●

●
●●●

● ●●●
●
●●●

●●●
●●

●

●●
●●
●●

●
●

●
● ●●
●

●
●●

●●
●●

●
● ●●

●●
●
●
● ●●●●●

●●●
●

●●●●● ●
●

●●●●●● ●●●
●
●

●
●

●●
●

●
●●●●

●
● ●●●●●●●●● ●
●●●●● ●●

●
●
●●

●
●●

●●●
●●

●● ●●
●

●
●●●

●

●
● ●●●●

●
●
●

●●
●●●●●

●●●
●

●
●

●●
●
●●

●
●● ●

●
●
●●
●

●● ●
●●● ●●● ●●

●
●● ●

●
●●
●●
●●

●●
●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRatio

eR
at

e

Iteration  160

● ●
●
●●● ●●

●●●
●
● ●
●
●●●

● ●●●
●
●●●
●●●
●●

●

●●
●●
●● ●

●
●
● ●●
●
●

●●
●●
●●

●
● ●●
●●
●
●
● ●●●●●
●●●
●

●●●●● ●
●
●●●●●● ●●●
●
●

●
●

●●
●

●
●●●●

●
● ●●●●●●●●● ●
●●●●● ●●

●
●
●●

●
●●

●●●
●●

●● ●●
●

●
●●●

●

●
● ●●●●
●

●
●

●●
●●●●●
●●●
●

●
●

●●
●
●●
●

●● ●
●

●
●●
●

●● ●
●●● ●●● ●●

●
●● ●

●
●●
●●
●●
●●

●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRate

eR
at
e

Iteration  160

●●
●●●●●●●●●●●●●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRatio

eR
at

e

Iteration 200 (Final)

●●
●●●●●●●●●●●●●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRate

eR
at
e

Iteration 200 (Final)

Fig. 8: Evolutionary processes of the 1st run on the MultipleFeatures dataset.

on the small datasets (similar performance with MOEA/D-
STAT on four small datasets). When the number of fea-
tures is large, MOEA/D-STAT significantly outperforms all
benchmark algorithms. The possible reasons can be seen
in Fig. 6. On the small datasets, MOEA/D-STAT evolves
the similar shapes with the four benchmark algorithms, but
for the same number of features, MOEA/D-STAT tends to
achieve lower classification errors. It is mainly because the
decomposition along with feature ratios makes the search
space of each sub-problem much smaller than the original
search space. Although the upper bound feature ratio limits
the number of features, MOEA/D-STAT still allows to replace
worse features in the current subset by better features through
communications with its neighboring sub-problems. On the
larger datasets such as Madelon and Isolet5, the fronts become
significantly different. Dominance-based algorithms quickly
lose their diversities and their populations focus mostly on the
middle of the Pareto front. OMOPSO is the worst dominance-
based algorithm while SPEA2 and NSGA-II show similar
search behaviors. Meanwhile, decomposition-based algorithms
achieve much more diverse front. Even standard MOEA/D’s

solutions have many more different feature ratios than NG-
SAII and SPEAII. MOEA/D-STAT also evolves as diverse
feature subsets as standard MOEA/D. However, with the same
number of features, MOEA/D-STAT always achieves a better
classification error. The reason is the fitness function in the
proposed decomposition strategy gives higher priority to the
classification error. Therefore, MOEA/D-STAT focuses more
on the classification error than standard MOEA/D.

On the test sets, as shown in Tables III and V, MOEA/D-
STAT is significantly better than the benchmark algorithms
on at least eight out of the 12 datasets, especially on the five
largest datasets. Fig. 7 shows that the median fronts evolved by
MOEA/D-STAT are usually more diverse than the ones by the
dominance-based algorithms. On Madelon, the median front
by MOEA/D-STAT contains 13 solutions with feature ratios
ranging from 0.002 to 0.05. Meanwhile, the four dominance-
based algorithms have only two or three solutions on their
median fronts and most classification errors achieved by the
dominance-based algorithms are attained by MOEA/D-STAT.

The results show that using multiple reference points gener-
ates better feature subsets than using multiple weight vectors.
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Since the fitness function in the proposed decomposition
focuses more on reducing the classification error, its clas-
sification performance is significantly better than standard
MOEA/D. The new decomposition not only preserves the
higher diversity over dominance-based algorithms but also
improves the diversity over using multiple weight vectors since
it ensures that each sub-problem, defined by a reference point,
corresponds to a solution on the Pareto front.

C. MOEA/D-DYN vs others

In Tables II - V, the second sign in the brackets shows
the significance test results, which compares each of the five
benchmark algorithms with MOEA/D-DYN. On the train-
ing set, in terms of the hypervolume indicator, NSGA-II,
MODE, SPEA2, OMOPSO and MOEA/D are significantly
worse than MOEA/D-DYN on all datasets. MOEA/D-STAT
achieves similar hypervolume as MOEA/D-DYN on four
datasets while being significantly worse on all other eight
datasets. In terms of IGD, on most cases the other algorithms
are significantly worse than MOEA/D-DYN. Similarly, on the
test sets, MOEA/D-DYN is worse than the other algorithms
on at most one dataset. The superiority of MOEA/D-DYN to
MOEA/D-STAT shows that its dynamic mechanism does not
affect the algorithm’s convergence and still preserves the high
performance of the new decomposition.

Now we will focus more on analyzing the effect of the
dynamic mechanism. As shown in Tables II-V, MOEA/D-
DYN achieves significantly better IGD/hypervolume values
than MOEA/D-STAT. The significant improvement is a re-
sult of improvement in both classification performance and
diversity of feature subsets, which can be seen in Fig. 6.
On the small datasets such as Vehicle, MOEA/D-DYN’s
fronts have the same length as MOEA/D-STAT. However,
with the same feature ratio, MOEA/D-DYN’s classification
error is always lower. On the medium datasets, MOEA/D-
DYN’s fronts become shorter because MOEA/D-DYN selects
fewer features than MOEA/D-STAT to achieve the same
classification performance. This pattern is clearly shown on
Musk1 in Fig. 6. On the two large datasets, Madelon and
Isolet5, the fronts evolved by MOEA/D-DYN is even much
shorter than MOEA/D-STAT’s ones. However, shorter fronts
do not mean MOEA/D-DYN’s solution sets are less diverse
than the solutions found by MOEA/D-STAT. Let take the
median fronts on Madelon as an example. MOEA/D-DYN’s
median front contains 16 feature subsets, which have feature
ratios varying in the range [0.002, 0.054]. Although MOEA/D-
STAT’s feature ratios have a longer range, [0.004, 0.1], its
median front has only 14 feature subsets. Despite selecting two
times more features than MOEA/D-DYN, MOEA/D-STAT’s
best feature subset in terms of classification error is still worse
than that of MOEA/D-DYN. Since the dynamic mechanism
does not waste resources on non-conflicting regions, it puts
more effort on the conflicting regions, which results in more
diverse feature subsets with better classification performance.
MOEA/D-DYN also achieves better performance than state-of-
the-art many-objective EMO algorithms on feature selection,
such as NSGA-III [45], MOEA/DD [46], and θ-DEA [47].
More details can be seen in the supplementary material.

D. Further analysis on the evolutionary processes

In this section, the search behaviors of different algorithms
are examined through their evolutionary processes. Besides
MOEA/D-DYN and MOEA/D-STAT, SPEA2 is selected as a
representative of dominance-based algorithms since it achieves
the best performance among the dominance-based algorithms.
The largest dataset, MultipleFeatures, is selected to show
the differences between the three algorithms clearly. The
three evolutionary processes are shown in Fig. 8. There
are four sub-figures corresponding to the populations at the
40th, 100th, 160th and 200th, the final iteration, respectively.
All algorithms start from the same initialization, but it is not
shown to save space. Since there is too much overlapping in
the center of Pareto fronts, we zoom these parts and put the
zoomed figure on the top right of each sub-figure.

As can be seen from the figure, at the 40th iteration, SPEA2
quickly loses its diversity due to the dominance ranking and
it mainly searches on a very small area of the objective space.
In the following iterations, its diversity becomes gradually
worse which finally results in a low-diversity front. On the
other hand, MOEA/D-STAT and MOEA/D-DYN maintain
their diversities through the whole process. However, their
search behaviors are quire different. It can be seen that since
MOEA/D-STAT evenly distributed its reference points on the
fRatio axis, its population spreads on the whole axis. However,
the solutions within the small fRatio (less than 0.5) is more
dense since some sub-problems with a large nref values can
take subsets with low fRatio as their solutions. MOEA/D-
DYN starts with focusing on the first interval which has
the feature ratio ranging in [0, 0.25]. Therefore, in the first
figure, most solutions are in this range. In the following
boundary iterations, MOEA/D-DYN shifts its focus to the
next interval. As shown in the second figure, at the 100th

iteration, MOEA/D-DYN starts focusing on the third interval
by allocating more reference points there. It seems that after
a number of iterations, it finds that the third interval is a
threshold interval, from which the two objectives are possibly
no longer conflicting. Therefore, MOEA/D-DYN allocates all
moving reference points on the first and second intervals as
shown in the fourth figure, without further reallocation. Note
that MOEA/D-DYN still leaves some reference points on the
other intervals in case the threshold interval detection is
not accurate. The final figure shows that the subsets evolved
by MOEA/D-DYN are more diverse with better classification
performance than the subsets evolved by MOEA/D-STAT.

E. MOEA/D-DYN vs classical feature selection approaches

In this section, MOEA/D-DYN is compared with four
classical feature selection algorithms including mRMR [37],
ReliefF [38], RFS [40], and CFS [39]. Since mRMR and
CFS can select features without specifying the number of
selected features, they result in exactly one feature subset
for each dataset. RFS and ReliefF output feature scores and
they require to pre-define the number of selected features.
To have a relatively fair comparison, we compute an average
front of MOEA/D-DYN on each dataset. 50 fronts obtained
by MOEA/D-DYN in the 50 independent runs are combined
into a union set. The classification errors of all feature subsets
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Fig. 9: Comparison with standard feature selection methods.

●
●

●

●

● ●

0.00

0.25

0.50

0.75

1.00

Austra
lian

Germ
an

Sonar
Musk1

Arrh
ythmia

Multip
leFeatures

Parameter

●

DYN−0.0

DYN−0.001

DYN−0.01

DYN−0.1

DYN−1.0
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with the same number of features (n features) are “averaged”
to obtain the average classification of n features. The “average
front” is obtained by combining all possible numbers of
features and their corresponding average classification errors.
The numbers of features appeared in the “average front” are
used as pre-defined numbers of features for RFS and ReliefF.
Therefore, RFS and ReliefF result in a set of feature subsets.

Fig. 9 show the solutions of the four standard feature selec-
tion approaches and the average fronts of MOEA/D-DYN on
WBCD, Musk1, Arrhythmia, and Isolet5. Similar patterns are
observed in other datasets. Given the same number of features,
MOEA/D-DYN achieves lower classification errors than the
other four standard approaches. mRMR and CFS are prone
to be trapped in local optima since they used greedy searches
such as sequential forward search and best first search to select
features. ReliefF updates the score of each feature individually,
which results in missing feature interactions and selecting
redundant features. Among the four classical approaches, RFS
achieves the most promising results. The main reason is that
RFS updates weights of features to minimize the difference
between the predicted output using all features and the desired
output, so RFS considers more feature interactions than the
other three standard approaches. However, RFS assumes the
linear relationship between features and the class labels, which
may not be true in real-world applications.

TABLE VI: Gene expression datasets.
Dataset #Features #Classes #Instances
SRBCT 2308 4 83
Leukemia1 5327 3 72
DLBCL 5469 2 77
Brain1 5920 5 90
Leukemia 7129 2 72

F. Further analysis on the effect of α

In order to examine the effect of α in Eq. (4), we examine
five different values of α: 1.0, 0.1, 0.01, 0.001, and 0.0 on
the 12 datasets. The value of 1.0 shows the equal importance
between two objectives while the value of 0.0 means the
classification accuracy is absolutely more important. A smaller
α value puts more pressure towards the classification accuracy.

For each value, MOEA/D-DYN has been run for 50 inde-
pendent times on each dataset. The results of the five different
values on six datasets are shown in Fig. 10. Similar results
are obtained on the other datasets. On each dataset, the five
hypervolumes by the five values are normalized for more
explicit comparisons.

Among the five values, the value of 1.0 results in the worst
performance on all datasets. The main reason is that reducing
the number of features is easier than reducing the classification
error. If the two objectives have the same importance (α = 1),
the algorithm focuses more on the number of features. The
smaller values of α can select the same number of features
with better classification performance, which results in their
better performance. Although the value of 0.0 has better
performance than the value of 1.0, it is not as good as
the other three values due to its absolute priority for the
classification performance. The strict requirement of having
lower classification errors to be a better solution makes the
population less diverse. Significance test results show that the
three values 0.1, 0.01, and 0.001 are not significantly different.
The value of 0.01 usually achieves the best or second best
results on all datasets, so it is the recommended setting for α
but the results are clearly not sensitive to this choice.

G. Further discussion-results on high-dimensional datasets

In the above subsections, the proposed algorithms are ex-
amined on datasets with up to 650 features. We also examine
the scalability of the proposed algorithms on gene expression
datasets [48] (Table VI) that contain thousands of features.

The IGD results of MOEA/D-STAT, MOEA/D-DYN and the
five benchmark algorithms are shown in Table VII. Similar
patterns are obtained on the hypervolume indicator. On all
datasets, MOEA/D-STAT significantly outperforms the five
benchmark algorithms, except for the test sets of SRBCT
where MOEA/D-STAT have the same performance as NSGA-
II, OMOPSO and standard MOEA/D. MOEA/D-DYN sig-
nificantly outperforms all the five benchmark algorithms on
all datasets. In comparison with MOEA/D-STAT, MOEA/D-
DYN achieves significantly better IGD values on all datasets.
The results show that the proposed decomposition mechanism
scales well with the number of features.

H. Computational times

The computational times of the proposed algorithms and the
five benchmark algorithms are shown in Table VIII. Note that
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TABLE VII: IGD on test sets (Gene expression datasets).
Dataset NSGA-II MODE SPEA2 OMOPSO MOEA/D MOEA/D-STAT MOEA/D-DYN
SRBCT 0.076±0.005 (◦ ↓) 0.201±0.004 (↓ ↓) 0.078±0.006 (↓ ↓) 0.072±0.007 (◦ ↓) 0.075±0.007 (◦ ↓) 0.074±0.004 (↓) 0.008±0.002
Leukemia1 0.090±0.008 (↓ ↓) 0.233±0.005 (↓ ↓) 0.095±0.008 (↓ ↓) 0.051±0.009 (↓ ↓) 0.087±0.004 (↓ ↓) 0.032±0.009 (↓) 0.015±0.002
DLBCL 0.096±0.006 (↓ ↓) 0.216±0.004 (↓ ↓) 0.098±0.010 (↓ ↓) 0.074±0.009 (↓ ↓) 0.095±0.010 (↓ ↓) 0.048±0.011 (↓) 0.015±0.007
Brain1 0.069±0.005 (↓ ↓) 0.208±0.004 (↓ ↓) 0.072±0.007 (↓ ↓) 0.037±0.008 (↓ ↓) 0.070±0.004 (↓ ↓) 0.017±0.003 (↓) 0.010±0.004
Leukemia 0.120±0.013 (↓ ↓) 0.302±0.004 (↓ ↓) 0.117±0.007 (↓ ↓) 0.072±0.028 (↓ ↓) 0.116±0.008 (↓ ↓) 0.032±0.015 (↓) 0.016±0.012

TABLE VIII: CPU times (minutes).
Dataset NSGA-II MODE SPEA2 OMOPSO MOEA/D STAT DYN
Wine 0.0 0.1 0.1 0.1 0.12 0.12 0.13
Australian 1.5 1.78 1.48 1.59 1.65 2.04 2.05
Vehicle 3.46 3.54 3.44 3.46 3.46 3.88 4.06
German 6.24 6.76 6.43 6.26 6.25 7.46 7.45
WBCD 2.42 2.62 2.4 2.38 2.43 2.8 3.06
Ionosphere 1.03 1.13 0.99 1.03 1.14 1.25 1.25
Sonar 0.64 0.71 0.63 0.64 0.73 0.75 0.76
Hillvalley 42.58 48.62 39.53 42.93 44.49 47.06 46.03
Musk1 11.01 13.55 10.82 11.1 11.44 13.2 13.34
Arrhythmia 12.89 18.42 12.83 12.75 13.63 14.07 13.69
Madelon 514.48 894.7 529.87 497.72 619.81 629.07 541.64
Isolet5 223.26 339.47 216.08 203.25 207.74 258.42 256.58
MFs 343.84 536.77 361.41 344.31 351.93 496.95 394.56
SRBCT 1.59 2.64 1.95 1.14 1.76 1.98 1.86
Leukemia1 3.52 4.95 4.22 1.93 3.52 3.52 2.97
DLBCL 3.91 5.95 4.76 2.09 3.92 4.02 3.38
Brain1 5.61 8.52 6.08 3.09 5.7 6.04 5.55
Leukemia 4.9 6.97 5.39 2.64 4.63 5.23 4.97

in a wrapper-based feature selection approach, the most time-
consuming step is evaluation due to the involvement of the
classification process. In general, MOEA/D-based feature se-
lection algorithms are not as efficient as the Pareto dominance-
based algorithms. The main reason is that MOEA/D-based
algorithms usually evolve more diverse fronts which may
contain feature subsets with large numbers of features. Since
the computational cost of a classification process increases
when the number of features is increased, MOEA/D-based
algorithms have longer computational times. Among the three
MOEA/D algorithms, the standard MOEA/D algorithm is
more efficient since it does not repair duplicated solutions as
in MOEA/D-STAT and MOEA/D-DYN.

In comparison with MOEA/D-STAT, MOEA/D-DYN is a
little bit slower on the small and medium datasets due to its ref-
erence points re-allocation. However, the differences between
these two algorithms are small. On the large datasets such as
Arrhythmia and Madelon, MOEA/D-DYN is more efficient
than MOEA/D-STAT. A possible reason is that MOEA/D-
DYN finds a threshold interval, which allows MOEA/D-
DYN to focus on regions corresponding to small numbers of
features. On the contrary, MOEA/D-STAT evenly distributes
reference points, so it has to consider regions corresponding
to large numbers of features. In comparison with dominance-
based algorithms, MOEA/D-DYN is at most 10% slower on
the large datasets, but it can evolve much more diverse Pareto
fronts. In general, among the seven algorithms, MOEA/D-
DYN has the best trade-off between effectiveness and effi-
ciency thanks to its mechanism to focus only on conflicting
regions that usually have small numbers of features.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, first a new decomposition for MOEA/D is
proposed to solve feature selection problems. Instead of using
multiple weight vectors, feature selection is decomposed by a
set of reference points allocated along the feature ratio axis.
The new decomposition is designed to deal with the discrete

Pareto front of feature selection. Then, a dynamic reference
point strategy is proposed to detect and allocate more resource
to the conflicting regions. The experimental results show that
the two multiple reference points algorithms can evolve more
diverse feature subsets than the five benchmark multi-objective
algorithms, including NSGA-II, MODE, SPEA2, OMOPSO
and standard MOEA/D, and the four classical feature selection
algorithms including mRMR, ReliefF, RFS, and CFS. The
multiple reference points decomposition also assists MOEA/D
to achieve better classification accuracy than using weight
vectors since there is more search pressure on improving the
classification performance. The dynamic mechanism allows
MOEA/D to focus more on the conflicting regions, which
results in more diverse Pareto fronts with lower classification
errors than the static mechanism.

The proposed multiple reference points decomposition al-
lows MOEA/D to work with multi-objective problems which
have discrete Pareto fronts like feature selection. The proposed
decomposition also alleviates the dependency on the Pareto
front shape since it guarantees each sub-problem with a
specific reference point corresponding to a solution on the
Pareto front. Furthermore, the dynamic multiple reference
points mechanism is useful for problems which have their
objectives partially conflicting. By investigating different sub-
regions of the objective spaces, the dynamic mechanism can
estimate in which regions the objectives are mostly conflicting
and accordingly allocate more resources on these regions.

A limitation of this work is that the multiple reference
points algorithms spend computational time on repairing du-
plicated feature subsets, which requires to re-evaluate the
repaired solutions. In the future, we will investigate a more
sophisticated evolutionary mechanism to avoid producing du-
plicated solution leading to better efficiency. Additionally,
although the multiple reference points decomposition achieves
more diverse fronts than dominance-based algorithms such as
SPEA2, sometimes solutions evolved by SPEA2 have higher
classification performances. If more search pressure is putting
on regions of those solutions, the feature subsets evolved by
MOEA/D can be further improved. However, these regions
depend on datasets and it is not easy to identify them. Recently,
a number of measures are proposed for feature selection,
e.g., information-based measures, and they achieve promising
results. It would be interesting to analyze the relationship
between these measures and the two main objectives of feature
selection to improve the feature selection performance.
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