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Abstract—Multi-label learning poses significant challenges due
to the complexities of co-occurring labels. Adversarial examples
are critical in safety-sensitive domains, where malicious tampered
data can compromise models. Yet, their application to tabular
multi-label learning remains under-explored, presenting a poten-
tial security risk. This paper introduces an adversarial training
framework leveraging Evolutionary Computation, specifically
the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES), to craft structured and concealable adversarial examples
for tabular multi-label classifiers. Our contributions centre on
an effective adversarial method tailored for tabulated multi-
label learning, and a many-objective framework to balance the
conflict between multi-label attack success, attack robustness, and
attack concealability. We extend multi-label adversarial training
to cope with tabulated data necessitating novel methods for
generating structured adversarial examples and assessing attack
concealability compared to image-based approaches—pioneering
future research in tabulated multi-label adversarial training.Our
framework also simulates real-world black-box attack scenarios
where true model information is unknown. Our approach trains
adversarial examples without prior knowledge of the target model
by competing with a proxy model, progressively training more
robust adversarial examples. Experiments show a high attack
success rate (81.3–100%) across large datasets, significantly
reducing multi-label classification performance post-perturbation
and confirming the concealability of the attacks. Our results
highlight the robustness of our approach, advancing adversarial
training for multi-label, tabulated data.

Index Terms—Adversarial perturbations, black-box attacks,
evolutionary many-objective, multi-label, classification

I. Introduction

MULTI-LABEL classification has become a contempo-
rary machine learning problem that involves predicting

a set of class labels for instances, belonging to a variety
of domains including text or semantic analysis [1]–[5] and
computer vision [6]–[13]. State-of-the-art research in multi-
label classification has primarily advanced through deep-
learning-based methods in contemporary domains such as
computer vision and tabulated (structured) problems. Before
the realisation of adversarial training [14], [15], traditional
deep-learning methods are trained on clean instances (referring
to instances that have not been modified by a third party
with malicious intent), without any conditioning to withstand
a potential attack. In safety-critical applications, the robustness
of a trained model against adversarial attacks has become a
critical point of contention. To this date, adversarial training
has mostly focused on computer vision (by focusing on
adversarial images), leaving adversarial training on tabulated
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problems, to the best of our knowledge, mostly unexplored.
This is particularly important as tabulated multi-label learning
represents a broader spectrum of multi-label domains, each
flattened to a tabulated representation via pre-trained models
or pre-specified methods [3]. Adversarial methods, largely
designed for images, do not translate well to the structured
nature of tabulated multi-label learning. The structured, high-
dimensional nature of tabulated multi-label data introduces
unique challenges in crafting perturbations that balance effec-
tiveness and concealability. The subtleties of perturbation mag-
nitude are also critical in tabulated contexts, where changes
must be meticulous to avoid detection by statistical or machine
learning defenses. This presents a critical safety risk for much
of multi-label deep learning, as malicious third parties can
inject tampered tabulated data to induce misclassification, even
without prior knowledge of the target model structure or its
decision boundaries [14], [15]. This is especially critical in
tabulated problems where misclassification can have profound
consequences. In multi-label scenarios, such errors could result
in inaccurate medical diagnoses or the improper assignment of
semantic labels, potentially allowing hate speech or sensitive
content to go unchecked, or mistakenly censoring normal
content.

Adversarial attacks are achieved through adversarial train-
ing, which learns optimal perturbations of instances that aim to
fool, i.e., induce misclassification of a deep learning model by
exploiting its decision boundaries [16]. There are primarily
two types of attacks, white-box and black-box attacks [17].
White-box attacks are achieved by accessing model parame-
ters, in contrast, black-box attacks only rely on model outputs
and model inputs (without any access to the underlying model
weights, gradients, or structure), thus simulating real-world
attack scenarios where the attacker does not possess access
to critical model information [17]. The key ideas behind
tabulated multi-label and image-based multi-label adversarial
training are respectively illustrated in Fig. 1 (a) and (b).
Perturbations that ultimately mislead a multi-label classifier’s
output are challenging to find in multi-label problems. The
complexity of multi-label classification necessitates that ad-
versarial attacks inducing misclassification must account for
the intricate interactions between features and multiple class
labels. This complexity poses additional challenges compared
to single-label classification, as perturbations may need to
add, remove, or swap a set of relevant or irrelevant labels
to mislead the classifier’s output all while keeping the at-
tack concealed. Therefore, multi-label adversarial attacks must
consider the interactions and dependencies among multiple
labels. Image-based adversarial attacks, shown in Fig. 1 (b)
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(a) Tabular (structured) multi-label adversarial training via
perturbation-based methods. Perturbations p ∈ RQ are applied to
latent representations z ∈ RQ of tabulated instances x ∈ RD to induce
the misclassification of multiple class labels.
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(b) Image-based multi-label adversarial training via noise map P to
generate image xa

p that induces misclassification over multiple class
labels.

Fig. 1: Subfigures (a) and (b) respectively show the key differences between multi-label adversarial training on tabular
(structured) data and contemporary (image) data. In either case, a structured perturbation vector p, or noise map P, is learned
to perturb a clean instance x to induce misclassification over multiple class labels on a model f trained on a set of clean
instances XN×D given N instances and D features.

can be practical, where concealability can be determined using
human verification or machine learning. In contrast, tabulated
multi-label problems lack the same practicality, and usually
cannot be verified as concealable by the human eye due
to the structured representation (especially with hundreds or
thousands of features), therefore the need for statistical or
machine learning methods to detect an attack makes them
particularly dangerous.

A promising attach of multi-label data is to encode an
instance using an autoencoder, introduce perturbations into
the latent representation, and then decode the instance back
into the original feature space. However, standard autoen-
coders tend to produce multiple entangled latent dimensions
that may change in tandem when introducing perturbations,
thus limiting control. Advances in variational autoencoders
(VAE), e.g., β-VAE [18], have enabled disentangled latent
representation learning. This allows changes in one latent
dimension to be relatively invariant to changes in other latent
dimensions, allowing an adversarial attack by manipulating the
latent representations of the input data. Generating convincing
or robust adversarial examples during adversarial training
also necessitates balancing the adversarial examples’ attack
success (quantifying its ability to mislead a classifier), and
the classifier’s robustness against the adversarial example.
Adversarial training can be framed as a many-objective optimi-
sation problem since attack success and robustness are directly
conflicting objectives [16], [19]. Furthermore, it is desirable to
conceal the attack attempt via invisible perturbations without
sacrificing the attack’s success, which can introduce additional
conflicting objectives during adversarial training. Evolutionary
computation (EC) has been widely used to optimise multiple
conflicting objectives; thus, we aim to leverage EC, partic-
ularly the Covariance Matrix Adaptation Evolution Strategy

(CMA-ES), in this work.
The aforementioned challenges of multi-label adversarial

training raise several interesting research questions. First, how
can we design a robust adversarial training framework for
tabulated multi-label problems, necessitating new methods to
generate structured perturbations? Second, how can we learn
convincing perturbations where the model information is not
available, i.e., a black-box attack? Third, how can we optimise
the attack success, classifier robustness, and attack invisibility
as adversarial training objectives simultaneously? These re-
search questions motivate the design of Multi-Label black-box
attacks via Many-objective Adversarial Perturbations (ML-
MAP), which constitutes the following major contributions.

A. Contributions

Our work proposes the Multi-Label black-box attacks via
Many-objective Adversarial Perturbations (ML-MAP) frame-
work, which leverages CMA-ES [20] to generate robust ad-
versarial examples without prior model information. ML-MAP
utilizes CMA-ES to optimise structured perturbations, ensur-
ing these adversarial instances remain effective and undetected.
The primary contributions of this paper can be summarised as
follows:

1) We develop a novel adversarial training framework,
incorporating CMA-ES to generate structured perturba-
tions for tabular multi-label data.

2) ML-MAP demonstrates an effective black-box attack
method using CMA-ES and many-objective optimisa-
tion, producing adversarial instances that balance attack
success, robustness, and concealability.

3) Through CMA-ES optimisation, ML-MAP efficiently
exposes vulnerabilities in current state-of-the-art tabular
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multi-label models, creating adversarial samples that
remain statistically undetected.

4) ML-MAP’s perturbations can exploit decision boundary
vulnerabilities to enhance misclassification, providing
potential insights into how adversarial strategies can in-
directly influence label confidence without prior knowl-
edge of the attacked model.

II. Background
A. Multi-label classification

Multi-label classification is emerging as the predominant
classification paradigm prevalent in many domains such as
computer vision [6]–[13] and tabulated learning [1]–[5]. Tra-
ditional multi-label classification algorithms transformed a
multi-label problem into a series of single-label problems
[21], [22], however, the efficacy of such methods was limited
as valuable label interactions were lost after transformation.
In response, deep-learning has been the primary influence
in advancing the multi-label classification field by not only
learning to predict all labels simultaneously but also learning
the various interactions between them [1], [23], [24].

Many state-of-the-art deep-learning methods have since
been proposed for tabulated multi-label classification. Dual
perspective label-specific feature learning for multi-label clas-
sification (DELA) [4] was proposed to train networks that were
robust against non-informative features through a perturbation-
based feature training framework. DELA’s framework iden-
tified noninformative features for each label and made the
discrimination process invariant to feature changes. This was
achieved by perturbing label-specific features during train-
ing while simultaneously identifying non-informative features,
optimised by a relaxed expected risk minimisation problem.
Another state-of-the-art method, collaborative learning of label
semantics and deep label-specific features (CLIF) [3], embed-
ded label interactions into the weights of the neural network by
superimposing a label graph using a graph auto-encoder. This
was achieved by jointly encoding a label relationship graph
into semantic embeddings and encoding label-specific features
using a disentanglement module. End-to-end probabilistic
label-specific feature learning for multi-label classification
(PACA) [25] introduced a unified framework to jointly perform
clustering analysis of each positive/negative instance of each
class label to obtain positive/negative prototypes; then, label-
specific features are learnt by measuring distances between the
original instances and the prototypes; and finally, classifiers are
induced based on the label-specific features.

Generally speaking, DELA, CLIF, and PACA compared
to many well-known multi-label learners: multi-label learning
with label-specific features (LIFT) [26], learning label-specific
features for multi-label classification (LLSF) [27], joint feature
selection and classification for multi-label learning (JFSC)
[28], learning deep latent spaces for multi-label classification
(C2AE) [1], and disentangled variational autoencoder-based
multi-label classification with covariance-aware multivariate
probit model (MPVAE) [2], have achieved state-of-the-art
results on a diverse set of tabulated multi-label domains.
Therefore, deep-learning has been solidified as the predom-
inant methodology for contemporary multi-label problems.

B. Adversarial training

Deep-learning methods are known to be susceptible to attack
by adversarial examples, thereby enabling attackers to induce
miss-classification. Many of the existing studies on adversarial
training are focused on multi-class classification, which cannot
directly be applied to the multi-label scenario due to the addi-
tional complexities of having multiple class labels per instance
[17]. Traditional methods for generating adversarial examples
have utilised gradient-based methods such as the fast gradient
sign method (FGSM) [16] to rapidly generate adversarial
examples. Following the FGSM study, many existing gradient-
based methods for generating adversarial examples have since
been proposed [29], [30]. Studies on adversarial training for
multi-label classification have been overwhelmingly applied
to multi-label image datasets. Song et. al. [31] proposed a
multi-label variant of Carlini & Wagner [32] attack (ML-CW)
and DeepFool [33] (ML-DF). ML-CW is an optimisation-
based method that combines both an ℓ2-norm of perturbations
and hinge-loss of attack targets for images. ML-DF is de-
fined as a constraint optimisation algorithm to superimpose
a perturbation on an image until it induces misclassification.
Furthermore, two ranking-based methods were also introduced
in the same study, namely ML-Rank I and ML-Rank II.

In any case, the proposed methods were designed specifi-
cally for images and assume certain properties of the target
classifier for an attack, i.e., a white-box attack, thus rendering
them inapplicable to black-box attacks on structured, tabulated
data. To enable black-box attacks in multi-label data, Kong et.
al. [17] proposed an evolutionary adversarial training method
for multi-label images with differential evolution (MLAE-
DE), utilising new fitness and crossover operators to generate
perturbed adversarial images. Recently, Wang et. al. [19]
proposed to learn structured perturbations for latent represen-
tations of single-label images. The perturbations are trained
in a generative adversarial network-based (GAN) framework
and compared against several single-label implementations of
FGSM, CW, and DF. However, in both papers, the adversarial
training method is again tailored for image data, moreover,
the methodology is not designed to account for the conflict
between model robustness, adversarial attack success, pertur-
bation magnitude, and attack concealability.

The existing studies on adversarial training highlight the
critical gap in research between tabulated multi-label learning
and adversarial training for black-box attacks, despite the
many state-of-the-art deep-learning-based multi-label learners
[1]–[5]. This leaves an important area of multi-label learning
unexplored and presents an important opportunity to propose
a robust multi-label adversarial training algorithm to mimic
potential real-world attacks for safety-critical systems via
black-box scenarios. To the best of our knowledge, we propose
the first multi-label tabulated adversarial training method for
black-box attacks.

C. Many-objective optimisation

Generating convincing adversarial examples requires a bal-
ance between model classification performance and attack
success, i.e., an attacked model and adversarial example should
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Fig. 2: The overall proposed approach of ML-MAP that jointly optimises a proxy model and perturbation vector p using
input training data X. During training, the proxy performance is recorded by classifying labels for X. Concurrently, a set of
randomly chosen samples from Xa ⊆ X are chosen to generate adversarial samples Xa

p using a pre-trained β-VAE and the
learned perturbation vector p. The adversarial samples are used to estimate attack success on the proxy model. Furthermore,
the attack concealability of the newly generated adversarial samples and the perturbation magnitude is calculated, resulting in
a four-objective minimisation problem.

compete in a GAN-based framework. In this framework,
the generated adversarial example should continually become
more convincing, and harder to detect, while the attacked
model should continually improve its robustness against attack
while maintaining acceptable classification performance on
real, unaltered examples. Here, many-objective adversarial
training emerges, involving a strategic optimisation where
multiple conflicting objectives—such as attack success, attack
robustness, and perturbation concealability—must be simul-
taneously considered and optimised. In this scenario, adver-
sarial training presents itself as a many-objective optimisation
problem (with more than three conflicting objectives that are
described in the following sections) that conflict with each
other. Formally, an o-objective minimisation problem can be
written as follows.

Definition II.1 (Many-objective optimisiation).

minimise o( f ) = (o1( f ), o2( f ), ..., oo( f )) (1)

where o( f ) is a vector of objective values for function f ,
oi( f ) is the ith objective value, f ∈ Ω is represented by a
decision vector (i.e., learnable parameters of a deep neural
network drawn from Ω). The quality of a solution is based on
the trade-offs between the objectives. A solution f dominates
solution f ′ (i.e., f ≺ f ′) if:

∀i : oi( f ) ≤ oi( f ′) and ∃ j : o j( f ) < o j( f ′). (2)

A solution is called a Pareto optimal solution if it is not
dominated by any other feasible solution. All the Pareto
optimal solutions form a trade-off surface called a Pareto
optimal set.

Definition II.2 (Pareto optimal set). A Pareto optimal set of
solutions PB contain the following:

PB = { f : { f ′ : f ′ ≺ f , ∀ f ′, f ∈ Ω, f ′ , f } = ∅}. (3)

The task of a many-objective optimisation algorithm is to
approximate the Pareto front.

III. TheML-MAP approach

The overall proposed approach for Multi-Label black-box
attacks via Many-objective Adversarial Perturbations (ML-
MAP) is outlined in the following section. ML-MAP learns
many-objective adversarial perturbations, which are structural
perturbations that aim to generate convincing attacks on state-
of-the-art tabulated multi-label classifiers. Namely, ML-MAP
utilises a pre-trained β-VAE to encode input samples and
learns by perturbing latent representations to generate adver-
sarial examples. The overall ML-MAP approach is detailed
in Fig. 2. First, the proxy model to estimate attack success
is detailed, followed by the proposed objective functions
to estimate attack success, proxy model performance, and
attack invisibility. Next, a many-objective fitness function is
proposed to optimise all of the proposed objective functions
simultaneously.

A. Notations for multi-label classification

Multi-label classification is a supervised machine learning
problem, where an instance can be associated with multiple
class labels simultaneously. Let X ∈ RD, Y ∈ {0, 1}K , and
Ω ∈ RL respectively denote the input, output, and learnable
parameter space for D features, K labels, and L parameters.
Let P be a joint probability distribution of samples over X×Y
and θ : RD → RK represent a deep neural network drawn from
Ω ∈ RL, and trained on N samples drawn from P. An input
vector x ∈ X, where X ∈ RD, can be associated with an output
vector that is a subset of Y ∈ {0, 1}K , i.e., y = {y1, ..., yK},
where yl = 1 if label l is associated with x, and is otherwise
zero. The input feature and label data are defined as X ∈ XN

and Y ∈ YN , respectively. In this paper, we define Q as the
number of perturbation dimensions.

B. Proxy configuration and perturbation parameterisation

A standard feedforward model is used in this paper to esti-
mate the model classification performance and attack success.
Due to the tabular nature of the data, our model takes matrices
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as inputs and outputs, allowing us to handle all samples
simultaneously, rather than individual vectors in standard feed-
forward networks. The encoding layer E : RN×D → RN×C with
bias WE

b , maps the input to C embedding dimensions, where
C << D. The mapped input is row-standardised (γ) before
being passed through a feedforward layer (L) with weights WL

and bias WL
b . Standardisation is repeated before the decoder

D : RN×C → RN×K with bias WD
b . Sigmoid activation (σ) is

applied at each layer (and in particular the output layer). The
full equation for generating the prediction matrix Ŷ is given
by:

Ŷ = σ(σ(γ(σ(γ(XE +WE
b ))WL +WL

b ))D +WD
b ). (4)

The sigmoid function ensures bounded activations, suiting the
shallow matrix-based representation, and ReLU and GELU
are more tailored to deeper architectures and address specific
issues such as vanishing gradients. The tight-bound complexity
estimate scales linearly with the parameters in the encoding
Θ(NDC) and decoding stages Θ(NKC), and quadratically with
C in the intermediary feedforward step Θ(NC2) assuming
naive implementation of matrix multiplication.

Furthermore, a perturbation vector p ∈ RQ is learned to
generate the adversarial examples via a pre-trained β-VAE
following a similar setup as [19]. In an attack scenarios, a
set of samples are chosen at random and are perturbed using
the perturbation vector. This can first be achieved through
encoding the adversarial sample into its latent representation
z, then adding the perturbation before decoding z′ = z + ϵp.
A scaling factor ϵ is used to control the intensity of the
perturbation.

C. Objective functions

Generating convincing multi-label adversarial examples re-
quires a balance between attack success, proxy model perfor-
mance, attack concealability, and perturbation magnitude. In
this paper, we estimate attack success in the following way.

1) Untargeted attack success: The first type of attack
simulates real-world adversarial attack scenarios where the
intent or strategy of the attacker is unknown, i.e., the attacker
can either add, remove, or swap class labels in an attack for
a random subset of instances Xa ⊆ X, Ya ⊆ Y. This type of
attack manifests as an untargeted attack. To determine attack
success, we use the micro-F1 (LF1 ) score to measure the
difference between precision and recall of predicted labels of
samples pre (Xa) and post-perturbation (Xa

p), averaged across
all labels. Formally, given a proxy model f , untargeted attack
loss (LU) is expressed in Eq. (5).

LU = min(1 − (LF1 ( f (Xa),Ya) − LF1 ( f (Xa
p),Ya)), 1) (5)

The behavior of the untargeted attack loss is that perturbations
that reduce the classification accuracy, i.e., LF1 ( f (Xa),Ya)) <
LF1 ( f (Xa

p),Ya), will reduce the loss value (ranging between 0
and 1), indicating a successful untargeted attack.

2) Proxy performance: To balance attack success with
model robustness, we propose to jointly train f and p in
a GAN-like framework. In this scenario, f will have to
withstand untargeted attacks from perturbed instances while
maintaining good performance on unaltered instances. This
can be formulated as the proxy model micro-F1 loss (LS ),
which balances the precision and recall, written in Eq. (6).

LS = LF1 ( f (X),Y) (6)

3) Attack concealability: Tabulated data is harder to visu-
alise than image data for the human eye, therefore quantifying
the invisibility of tabulated perturbations is harder to define.
In this paper, use utilise a distance-based metric to measure
the similarity between adversarial samples pre and post-
perturbation. This is given by the concealability loss (LC) Eq.
(7).

LC =
1

1 + (e−µ
MS E
Xa )

(7)

where µMS E
Xa prescribes the average MS E between pre and

post-perturbation adversarial samples.

µMS E
Xa =

∑|Xa |

i=1 MS E(Xa
i:,X

a
pi:

)

|Xa|
(8)

4) Perturbation magnitude: The final objective function
calculates the magnitude of the perturbation vector p, to
discourage arbitrarily large perturbations that deviate from
the latent representation of each sample. To achieve this, we
introduce an ℓ2-norm-based loss (LN) bounded between 0 and
1 in Eq. (9).

LN =
1

1 + e−||p||
(9)

D. Many-objective fitness function
All objective functions in Section III-C are designed to

be minimised and range between 0 and 1. Therefore, we
propose a four-objective minimisation problem consisting of
attack success, proxy performance, attack concealability, and
perturbation magnitude. The attack success is formulated as
the discrepancy between classification performance pre and
post-perturbation. We use a Lebesgue measure-based fitness
function to navigate the complex landscape of many-objective
adversarial training, extending the state-of-the-art Consistent
Lebesgue Measure-based Multi-label Learner (CLML) frame-
work [34]. This choice is motivated by the Lebesgue measure’s
wide use in multi-objective optimisation [35]–[37]. In compar-
ison to traditional multi-objective methods such as dominance-
based sorting, the Lebesgue measure can be proven consistent
with the underlying desired objective functions [34], which
is a desirable property when directly optimising non-convex
or discontinuous objective functions such as the micro-F1
untargeted attack loss [38].

To optimise this fitness landscape, we represent both model
weights ( f ) and perturbation vectors (p) as flattened vectors
[ f , p], leveraging the covariance matrix adaptation evolution-
ary strategy (CMA-ES) [20], a robust and widely-used non-
convex optimiser [39]–[41]. Extending the CLML framework
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allows ML-MAP to optimise the proxy model weights and
perturbation vector jointly based on the several non-convex
losses proposed in Section III-C. This optimisation framework
also motivates the choice of the proxy model, where weights
can be sampled from the multi-variate distribution learned by
CMA-ES.

Definition III.1 (Lebesgue measure). Given o = 4, let
LU ,LS , LC , and LN respectively, without loss of generality,
represent the untargeted attack loss, proxy performance loss,
concealability loss, and perturbation magnitude loss. Let Z =
{z ∈ Ro|zi ∈ (0, 1),∀i = 1, · · · , o} be a set of all possible loss
vectors; R ⊂ Z denote a set of mutually non-dominated loss
vectors L = (LU ,LS ,LC ,LN) ∈ Ro; F denotes the learned
function and perturbation ψ = ( f , p) ∈ F that produce L, and
a mapping function g(ψ) = L, g : F → Ro (representing the
mapping performed by ML-MAP in Fig. 2); and H(F,R) ⊆ Z
denotes the set of loss vectors that dominate at least one
element of R and are dominated by at least one element of
F:

H(F,R) := {z ∈ Z | ∃ψ ∈ F,∃r ∈ R : g(ψ) ≺ z ≺ r}. (10)

R is initialised to a set containing the unit loss vector {1}4,
which denotes the worst possible performance on all objective
functions and is updated afterward. The Lebesgue measure,
λ(H(F,R)), is quantified as the measure of space within Ro that
is dominated by F over R, representing the ”area” where F
produces better loss vectors compared to those in R. Formally,
it is defined by the integral:∫

Ro
1H(F,R)(z)dz. (11)

where 1H(F,R) is the indicator function of H(F,R). The
indicator function takes the value 1 for all z ∈ H(F,R),
indicating points where the loss vector z falls within the
dominated space of F over R, and 0 otherwise.

Definition III.2 (Lebesgue contribution). The contribution
of ψ toward the improvement (minimisation) of a set of
loss functions L can be quantified by first measuring the
improvement of ψ via the partition function P(ψ):

P(ψ) = H({ψ},R)\H(F\{ψ},R). (12)

Hence, the Lebesgue contribution of ψ, λ(P(ψ)) =∫
Ro 1P(ψ)(z)dz, describes it’s contribution to minimising L. Ul-

timately, λ(H(F,R)), and thereforeL, is sought to be optimised
via λ(P(ψ)), i.e., ψ is guided by evaluating its Lebesgue contri-
bution λ(P(ψ)), thus measuring the new marginal improvement
of a loss vector over a set of previously found loss vectors.

To efficiently calculate the Lebesgue contribution (espe-
cially when the set of functions F and R are sparsely populated
during the early stages of the optimisation), we estimate the
Lebesgue measure using Monte Carlo sampling [36]. First, a
sampling space S ⊆ Z is defined that entirely contains P(ψ),
i.e., P(ψ) ⊆ S ⊆ Z. The sampling space can be problem-
specific, however, in this paper, it is defined to contain all
possible loss vectors between {0}4 and {1}4. Following, g
samples, si i = 1, · · · , g, are drawn from S randomly and

with uniform probability. Given {s1, · · · , sg}, the Lebesgue
contribution is estimated via λ̂(P(ψ)) via the following:

λ̂(P(ψ)) = λ(S (ψ)) =
|{si|si ∈ P(ψ)}|

g
(13)

where |{si|si ∈ P(ψ)}| is denoted as the number of randomly
sampled solutions that exist in P(ψ), also known as hits.
The probability p of a sample being hit is i.i.d. Bernoulli
distributed, therefore, λ̂(P(ψ)) converges to λ(P(ψ)) with 1

√
pg

[42].

E. Optimisation process

1) Covariance matrix adaptation: Optimisation of ML-
MAP is achieved with the state-of-the-art Consistent Lebesgue
Measure-based Multi-label Learner framework (CLML) [34],
which uses co-variance matrix adaptation evolutionary strategy
(CMA-ES) [43] as a gradient-free numerical optimisation
technique. CMA-ES is well-suited for non-convex and non-
differentiable optimisation problems. Let θ f denote the vector
consisting of the learnable parameters of a learned function f
a perturbation vector p, where θ = [θ f ,p]. CMA-ES samples n
solutions from a multi-variate normal distribution as follows:

θi ∼ m + σNi(0,C) ∀i, 1 ≤ i ≤ n (14)

where θi are the parameters of the ith function, 1 ≤ i ≤ n,
m is the expected density of θi, σ the step-size, and C the
covariance matrix. CMA-ES therefore iteratively updates m
and C via the following:

mt+1 = mt + σ

µ∑
i=1

wiθ
top
i (15)

Ct+1 = (1 − ccov)Ct + ccov

µ∑
i=1

wiθ
top
i (

µ∑
i=1

wiθ
top
i )T (16)

where ccov is the learning rate,
∑µ

i=1 wiθ
top
i is the weighted

sum of the µ-top ranked solutions at iteration t, where the
weights w1 > w2 > · · · > wµ > 0 and

∑µ
i=1 wi = 1. It is also

deemed that solutions θtop
i ∼ m + σNi(0,C) are ranked such

that θtop
1 ≺ · · · ≺ θtop

µ and that the µ ranked solutions are a
subset of the total number of sampled solutions, i.e. µ < n.
This method is referred to as rank-one update.

2) Pseudocode of ML-MAP: The overall process of ML-
MAP is detailed in Algorithm 1. The ML-MAP approach
learns a covariance matrix for the parameters ψ = [ f , p]
consisting of the proxy model weights and perturbation vector.
The incumbent solution for ψ is optimised iteratively by
updating the covariance matrix C and density vector m until
the maximum number of generations T is met. Initially, the
reference set R is set to a unit vector, and the set of function
solutions F is set to an empty set. In each generation, λ new
incumbent solution is generated from a multivariate normal
distribution and added to F. A set of adversarial samples are
generated from a random subset of the original instances for
each solution. The attack loss and proxy loss are calculated
using the training and validation set, and the perturbation
magnitude and concealability are calculated. Once all loss
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Algorithm 1 Multi-label black box attacks via many-objective
adversarial perturbations (ML-MAP)

Input: Maximum epoch T , pre-trained β-VAE, X, Y;
Initialise R0 to unit vector {1}4;
Initialise F0 = {∅};
Initialise C0 and m0;
Set t = 0;
Set ψ0 = [ f 0, p0] = m0;
while t < T do

Generate ψi ∼ mt + σNi(0,Ct), 1 ≤ i ≤ n;
Set F t+1 =

⋃λ
i=1{ψ

i};
for ψi ∈ F t+1 do

Randomly sample N
10 solutions Xa ⊆ X and Ya ⊆ Y

and generate Xa
p;

Calculate the training (tra) and validation (val) loss
values for LU , LC , LS , and LN ;
Estimate λ(P(ψi)) over LU

tra(ψi), LS
tra(ψi), LC

tra(ψi), and
LN

tra(ψi), and prescribe it as the fitness for ψi;
Archive LU

val(ψ
i), LS

val(ψ
i), LC

val(ψ
i), LN

val(ψ
i), and the

corresponding ψi;
end for
Update mt+1 using solutions ∀ψi ∈ F t+1; Update Ct+1

using λ(P(ψi)) as fitness values ∀ψi ∈ F t+1;
Update Rt+1 by calculating the mutually non-dominated
solutions in Rt ∪ F t+1;
Set ψt+1 to the best solution in F t+1 according to its
prescribed fitness value;

end while
Return: Incumbent solutions for each loss function from
archive: L(U)

val (ψi), LS
val(ψ

i), LC
val(ψ

i), LN
val(ψ

i), and the final
incumbent solution ψT ;

TABLE I: Summary of datasets. D, N, and K correspond to
the number of features, instances, and labels, respectively.

Dataset N D K Kµ DK/Kµ

flags 194 19 7 3.392 39.21
CAL500 502 68 174 26.044 9, 637.54
emotions 593 72 6 1.869 231.14
genbase 662 1186 27 1.252 25, 576.68
enron 1702 1001 53 3.378 15, 705.45
yeast 2417 103 14 4.237 340.335
tmc2007-500 28,596 500 22 2.158 5,097.31
mediamill 43,907 120 101 4.376 2,769.65
IMDB-F 120,900 1001 28 2.000 14,014

values have been calculated, the Lebesgue contribution is esti-
mated and prescribed as the fitness of ψi. After each solution
has been evaluated, the density and covariance matrix are
updated, and the incumbent solution is updated and stored in
an archive concerning each loss function. ML-MAP returns the
best solutions for each loss function and the final incumbent
solution.

IV. Experiment design

A. Datasets

We conduct the experiments on nine widely-used multi-
label datasets, shown in Table I. Kµ (the cardinality) of an
instance measures the average number of associated class
labels; DK/Kµ, the theoretical maximum complexity of an

instance, (i.e., the average feature to label interactions per
instance). For each dataset, 30% are partitioned to the test set
[44]. The remaining 70% is further split such that 20% is used
as a validation set, and the remaining is used for training. We
apply normalisation to all numerical features before training.
The β-VAE is pre-trained on the training portion of each
dataset.

B. Comparative methods

The existing multi-label adversarial training methods are
tailored for image data, and are not designed to find many-
objective perturbations. Hence, we propose to attack three of
the state-of-the-art multi-label deep learning models: DELA
[4], PACA [25], and CLIF [3]. We analyse the classification
performances of each of DELA, PACA, and CLIF trained
on clean instances, and later attacked using 10% (up to a
maximum of 1, 000 instances) of the test set as both unaltered
(Xa) and carefully perturbed adversarial instances generated
by ML-MAP (Xa

p), i.e., DELA+ML-MAP, PACA+ML-MAP,
and CLIF+ML-MAP. To determine the effectiveness of ML-
MAP, we also analyse the adversarial distributions pre (Xpre)
and post perturbation (Xpos). This is initially achieved using
a non-linear projection to reduce the adversarial samples
into components IC1 and IC2 using Isomap [45]. Differences
between distributions concerning ML-MAP are calcuated by
the earth movers distance (EMD) [46] given in Eq. (17):

EMD(Xpre,Xpos) = min
γ

∑
i, j

γi, jd(xpre
i , xpos

j ) (17)

where d(·) represents the Euclidean distance function, γi, j the
optimal transportation plan solved by numerical methods, and
xpre

i ∼ Xpre, xpos
j ∼ Xpos. Due to true distributions of each

dataset being unknown, the significance of the differences
are determined by a non-parametric Kolmogorov-Smirnov test
[47] using a permutation test [48] with a significance level of
5%. Permutation tests are generally robust to violations of
assumptions such as normality. The permutation test conducts
repeated comparisons between a random pair of adversarial
examples sampled from Xpre ×Xpos to estimate the statistical
significance between Xpre and Xpos. Moreover, by creating a
null distribution via randomisation of the data, the permutation
test is essentially distribution-free, meaning that it does not
rely on any assumptions regarding the underlying characteris-
tics of the distributions.

C. Parameters

Based on previous work on the Lebesgue measure-based
optimiser [34], we set O = 500 (the maximum number of
epochs). Furthermore, the embedding dimension of the proxy
model, C, is set to C = 20 based on the recommendations
in [34]. Moreover, based on initial trial and error, the scaling
factor ϵ is set to 0.05. The parameter configurations for DELA,
PACA, and CLIF are set to the recommended values in their
respective papers [3], [4], [25].
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TABLE II: Adversarial attack results. The untargeted attack results are presented in terms of micro-F1 (LF1 ), label ranking
average precision (LAP), and Hamming-loss (LHL) of each clean model tested on Xa and Xa

p sampled from the test set.

Metric Method emotions flags CAL500 enron genbase yeast IMDB-F mediamill tmc2007-500

LF1 (↓)

CLIF 0.754 0.703 0.361 0.475 0.979 0.610 0.164 0.645 0.783
CLIF+ML-MAP 0.429 0.488 0.330 0.392 0.000 0.000 0.070 0.484 0.280
DELA 0.732 0.706 0.351 0.443 1.000 0.608 0.164 0.645 0.774
DELA+ML-MAP 0.429 0.702 0.321 0.392 0.000 0.000 0.093 0.467 0.334
PACA 0.778 0.667 0.372 0.491 1.000 0.606 0.100 0.635 0.727
PACA+ML-MAP 0.459 0.293 0.267 0.061 0.047 0.431 0.000 0.403 0.237

LAP(↓)

CLIF 0.909 0.791 0.380 0.603 1.000 0.723 0.590 0.801 0.862
CLIF+ML-MAP 0.580 0.508 0.415 0.450 0.519 0.601 0.578 0.576 0.396
DELA 0.894 0.866 0.404 0.611 1.000 0.723 0.608 0.781 0.863
DELA+ML-MAP 0.577 0.697 0.416 0.454 0.487 0.581 0.587 0.614 0.421
PACA 0.915 0.741 0.423 0.608 1.000 0.717 0.633 0.778 0.845
PACA+ML-MAP 0.580 0.457 0.272 0.091 0.182 0.373 0.615 0.550 0.257

LHL(↑)

CLIF 0.157 0.262 0.165 0.057 0.002 0.218 0.050 0.026 0.042
CLIF+ML-MAP 0.370 0.500 0.141 0.063 0.047 0.301 0.964 0.037 0.342
DELA 0.176 0.238 0.167 0.059 0.000 0.228 0.055 0.028 0.045
DELA+ML-MAP 0.370 0.270 0.143 0.063 0.047 0.301 0.648 0.044 0.249
PACA 0.148 0.286 0.158 0.062 0.000 0.233 0.041 0.029 0.055
PACA+ML-MAP 0.364 0.690 0.225 0.841 0.080 0.538 0.036 0.055 0.325

TABLE III: Attack Success Rate (ASR) across datasets.

Method emotions flags CAL500 enron genbase yeast IMDB-F mediamill tmc2007-500
CLIF+ML-MAP 83.33% 100% 33.33% 66.0% 100% 84.7% 100% 82.1% 100%
DELA+ML-MAP 83.33% 83.33% 33.33% 66.0% 100% 73.6% 100% 81.3% 98.6%
PACA+ML-MAP 83.33% 100% 93.33% 100% 100% 98.6% 90.8% 91.2% 100%

V. Results and discussions

A. Attack performance

The adversarial attack performance of ML-MAP on CLIF,
DELA, and PACA are shown in Table II. The results are shown
in terms of micro-F1 (LF1 ), label ranking average precision
(LAP), and hamming-loss (LHL). Each model is trained on
clean instances and tested on both unaltered instances Xa and
perturbed instances Xa

p (with both sets sampled from the test
set). A successful untargeted attack is indicated by a lower
classification performance score for both LF1 and LAP, and
a higher score for LHL. In almost all cases, CLIF, DELA,
and PACA are fooled by the perturbed adversarial examples
generated by ML-MAP. The only scenario where this is not
the cases is on CAL500 for both DELA and PACA models on
LAP and LHL. On some datasets such as genbase and yeast,
this can be as extreme as inducing complete misclassification
(especially in terms of LF1 ). This can be expected as genbase
has a very low cardinality of approximately one label per
instance, and yeast has a relatively small number of labels. In
both cases, it is easier for ML-MAP to induce misclassification
due to the less complex decision boundaries.

On the other hand, Table III shows the frequently-used
Attack Success Rate (ASR) [16], [17], given in Eq. (18):

AS R =
1(LF1 (Xa; f ) > LF1 (Xa

p; f ))

|Xa|
× 100 (18)

where f ∈ {CLIF,DELA, PACA} and 1(·) being the indicator
function that counts each successful attack, similar to the
untargeted attack loss LU in Eq. 5. In comparison to the results
presented in Table II, the ASR’s in Table III do not show
the overall degree of induced misclassification, but rather how
many of the perturbed instances induce misclassification. In
most cases, ML-MAP can achieve between 80-100% ASR.
On the CAL500 dataset, CLIF+ML-MAP and DELA+ML-
MAP achieve only a 33.3% ASR, which coincides with the

adversarial attack results in Table II. In terms of the large-scale
datasets, ML-MAP can achieve between 90.8% and 100%
ASR on IMDB-F, between 81.3% and 91.2% on mediamill,
and between 98.6% and 100% on tmc2007-500. In general,
based on the results in both Tables II and III, ML-MAP has
demonstrated a successful attack on three state-of-the-art deep-
learning models for tabulated multi-label classification. The
next section analyses the training curves of ML-MAP to better
understand the optimisation behaviour that leads to successful
perturbations.

B. Many-objective training curves

We propose to analyse the relationships between the attack
loss LU , proxy loss LS , attack concealability LC , and per-
turbation magnitude LN . Fig. 3 plots the training trajectory
of ML-MAP concerning the four loss functions (with LN

represented in colour), while the red line traces the moving
average trajectory of ML-MAP on the approximate loss land-
scape. Overall, the learning behaviour is a non-smooth descent
over the learning-related loss functions LU and LS , and the
attack concealability LC . The perturbation magnitude LN , on
all cases except on yeast and tmc2007-500, increases over time
as other loss functions decrease. This is expected as convincing
adversarial examples may require some movement from the
original pre-perturbation latent space.

Despite the overall trend in minimisation, the loss landspace
appears highly discontinuous and non-smooth. In most cases,
several distinct clusters of vertically spread solutions are
observed, as ML-MAP ”jumps” between them during opti-
misation. These vertically spread clusters consist of similar
learning loss functions values for LU and LS , and greater
variation in LC . This can indicate conflict among the loss
functions, although LC can remain variable even on solutions
that exhibit good proxy performance and attack success. In any
case, despite a degree of stochasticity, there is some indication
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Fig. 3: The many-objective training curves of ML-MAP plotted against LU , LS , and LC . The colour represents the perturbation
weight magnitude LN . The red line shows the moving average trajectory of ML-MAP. A zoom-in plot is presented at the top
right of each subplot to highlight the area of convergence. Results are presented on flags through IMDB-F (a-i).

of non-smooth descent over LU , LS , and LC loss functions.
Recall that ML-MAP specifically optimises the Lebesgue
contribution λ(P( f )), i.e., the contribution toward the improve-
ment of the Lebesgue measure λ(H(F,R)). In this case, by
empirical observation, maximising the Lebesgue contribution
directly corresponds to the minimisation of the desired loss
functions, although conflicting behaviour of LN is observed.
Due to the tabulated nature of the data, visual examination of
the perturbed adversarial samples to determine concealability
is not easily achieved. Therefore, we propose to analyse the
concealability of the perturbed tabulated adversarial samples

in the following section through distribution measurement.

C. Quantifying concealability via distribution analysis

Fig. 4 shows the kernel density estimations of distributions
of pairwise Euclidean differences of samples pre (Xa) and post
(Xa

p) perturbation. The mean of the distributions are drawn in
red, and standard deviations in yellow. The distributions of dif-
ferences for all datasets are roughly symmetrical (and normal),
except on flags. All distributions are centered around 0.5. The
symmetry around 0.5 indicates that, on average, perturbations
do not significantly shift samples in any direction (within one
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Fig. 4: Distributions of pairwise Euclidean distances between Xpre and Xpos modelled by kernel density estimation.
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Fig. 5: Visualisation of Isomap projections of Xpre (left) and Xpos (right) with Guassian filtering (σ = 4) and bins (B = 50).
Data is projected onto two Isomap components: IC1 and IC2.

TABLE IV: Observed earth movers distance (EMD) and Kolmogorov-Smirnov test between Xpre and Xpos via a permutation
test.

flags CAL500 emotions enron genbase yeast tmc2007-500 mediamill IMDB-F
EMD < ϵ 0.0004 < ϵ 0.0016 0.0008 0.0036 0.0172 0.1392 0.0568

p-value 1.0 1.0 1.0 0.7908 0.8928 0.4863 0.0983 < ϵ < ϵ

unit norm). However, the higher degree of variation on the
flags datasets suggests that perturbations have a difference
effect on the distribution of samples.

To better understand the distributions of adversarial sam-
ples pre and post perturbation, Fig. 5 visualises the Isomap
projections of two distributions: Xa ∼ Xpre and Xa

p ∼ X
pos.

Both pre and post perturbation data is projected onto two
Isomap components: IC1 and IC2, and density is presented in
colour. On datasets flags through tmc2007-500 (a-g), the two
distributions in Isomap space share similar ranges and concen-
trations. For example, on CAL500, both Xpre and Xpos share

similar densities between IC2 ∈ [10, 20] and IC1 ∈ [0, 20];
on emotions, between IC2 ∈ [20, 30] and IC1 ∈ [20, 30]; on
enron, between IC2 ∈ [10, 20] and IC1 ∈ [0, 10]; on yeast,
between IC2 ∈ [10, 30] and IC1 ∈ [10, 20]; and on tmc2007-
500, between IC2 ∈ [10, 20] and IC1 ∈ [10, 20]. The scale
and location of densities are similar in most cases, except for
mediamill and IMDB-F. On mediamill, Xpos appears to shift
by 10 units on IC2 and -20 on IC1, and on IMDB-F, by 15
on IC2 and -10 on IC1.

Based on these results, we investigate whether any statis-
tically significant differences exists between Xpre and Xpos.
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Fig. 6: Visualisation of the change in class label confidence of CLIF between Xpre and Xpos. Results are presented on flags
through IMDB-F (a-i).
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Fig. 7: Visualisation of the change in class label confidence of DELA between Xpre and Xpos. Results are presented on flags
through IMDB-F (a-i).

Table IV shows the earth movers distance (EMD) along with
the Kolmogorov-Smirnov test between Xpre and Xpos via a
permutation test. On datasets flags through tmc2007-500, the
EMD value is less than 0.02, and the p-value at significance
level 5%, fails to reject the null hypothesis of any significant
differences between Xpre and Xpos. On flags through emotions,
the p-value is 1.0, which is potentially due to the relatively
small number of samples. On the larger datasets such as
mediamill and IMDB-F, the p-values are less than ϵ = 1e− 5,
which could be due to larger variations in the data that may
lead to difficulties in generating perturbations that lie in-
distribution while successfully learning the decision boundary
vulnerabilities of the classifier.

D. Analysing changes in label confidence

Fig. 6, 7, and 8 plot the average raw change (∆) in label
confidence between Xa and Xa

p of each adversarial example
for CLIF, DELA, and PACA, respectively. We proceed the
analysis by discussing each dataset seperately.

1) Adversarial examples on the flags dataset tend to induce
a reduction in confidence for CLIF, DELA, and PACA
on labels 0, 2 and 4. On the other hand, labels 1, 3, 5,
and 6 tend to increase in confidence.

2) Perturbed adversarial examples on the CAL500 dataset
tend to modify (both decrease and increase) class label
confidences in bands between labels 0 and 40, and labels
80 and 120. These bands are more clear for CLIF, and
less so for DELA and PACA.

3) On the emotions dataset, the most consistent trend is
increase in confidences for labels 1, 2, 3, and 4 on all
three models. Some examples see a significant decrease
in confidence for labels 0, 3, 4, and 5, although this is
not consistent across all adversarial examples.

4) On the genbase dataset, most labels are relatively un-
altered, except for labels 0 through 12, which some
examples tend to induce significantly lower confidence.
This is expected since genbase has a lower cardinality
than most datasets, which an average of one class label
per instance, which suggests attacks can be easier to
achieve by only modifying a small subset of labels.

5) On enron, there are several clear bands of labels that
have been modified. Approximately label 6, 11, 14, and
24 tend to share in both increases and decreases of label
confidence post perturbation.

6) On yeast, labels 0 through 6 tend to have varying
increases and decreases in label confidence. Labels 2
and three tend to increase in label confidence, especially
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(h) mediamill
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(i) IMDB-F

Fig. 8: Visualisation of the change (∆) in class label confidence of PACA between Xpre and Xpos. Results are presented on
flags through IMDB-F (a-i).
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Fig. 9: Visualisation of the change (∆) in class label confidence of irrelevant and relevant labels predicted by CLIF (left),
DELA (middle) and PACA (right) between Xpre and Xpos on each dataset flags through IMDB-F (a-i).

for PACA. On all three models, labels 11 and 12 tend
to be heavily reduced in confidence.

7) On tmc2007-500, labels 3-9 and 12-18 tend to increase
in confidence, while labels 1, 18 tend to decrease. No-
tably, perturbations seem to induce decreases on labels
18-21 for PACA.

8) Most labels for mediamill are unaltered, except few

between labels 24-36 and 60-72. There are some positive
changes to confidence between labels 72-84 on PACA.

9) On IMDB-F, there are almost no negative decrease in
confidences for CLIF and PACA. For DELA, a few class
labels are decreased in confidence between labels 0 and
12, and label 19.

To better understand the changes in label confidence, Fig.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

9 plots the changes (∆) in class label confidence of irrelevant
(red) and relevant (blue) labels predicted by CLIF, DELA,
and PACA on all datasets. Adversarial perturbations appear
to induce changes that can exploit similar vulnerabilities in
decision boundaries across all three models, i.e., the distribu-
tions between irrelevant and relevant label confidence changes
remain similar across CLIF, DELA, and PACA, although the
overall patterns themselves vary across datasets.

1) The patterns across flags, emotions, yeast and tmc2007-
500 are mostly similar. On these datasets, the relevant
and irrelevant distributions appear to mirror each other.
Namely, increasing both false positives and false neg-
atives. On emotions, both distributions spike around 0,
although the overall mirror pattern remains.

2) On CAL500, enron and mediamill, the irrelevant label
change appears to spike near 0, which suggests that the
primary influence to inducing misclassification was to
increase false negatives.

3) On genbase, both distributions are heavily mirrored and
unimodal for all three models, maximising false positive
and false negatives. However, and most importantly,
PACA does not appear to induce false positives, relying
more on false negatives to induce misclassification. On
this specific dataset, it is possible that the prototype-
based classification approach in PACA, where label-
specific features are generated based on distances be-
tween positive and negative probabilistic prototypes,
tend to make PACA more resilient to the types of
perturbations that affect false positives.

4) On IMDB-F, both false positive and true positives seem
to occur most often as both distributions are left tailed.
This suggests that the exploited vulnerability in the deci-
sion boundary of IMDB-F that induces misclassification
also tends to improve the overall true positives, which
could also imply that it is easier to classify everything
as a positive label.

VI. Conclusions

Deep-learning has unequivocally advanced the field of tab-
ulated multi-label learning, and has thus become state-of-the-
art. However, existing adversarial works are either designed for
images, white-box-attacks (that requires inside knowledge of
the model), or single-objective optimisation, which is a critical
shortcoming in research that aims to generate convincing
adversarial examples for tabulated multi-label data that can
balance classifier robustness, attack success, and concealabil-
ity. To address these concerns, this paper proposes a highly
novel adversarial training method for tabulated multi-label
problems, namely Multi-label black-box attacks via Many-
objective Adversarial Perturbations (ML-MAP). We primarily
propose a novel adversarial training framework for multi-label
classification that can generate convincing structured pertur-
bations for tabulated data. Moreover, ML-MAP is designed to
learn convincing perturbations using a proxy model to simulate
a black-box attack scenario where the true model informa-
tion is unavailable. This is particularly significant, as ML-
MAP can successfully generate perturbations that are capable

of inducing misclassification on state-of-the-art deep-learning
models that are trained on clean instances. The effectiveness
of the perturbations learned by ML-MAP can be attributed
to the design of a many-objective optimisation problem that
balances the proxy model robustness, attack invisibility, and
attack success, which helps generate convincing adversarial
examples. In addition to the high attack success rates, and un-
equivocal success in inducing misclassification across multiple
datasets, ML-MAP can also learn perturbations that produce
adversarial examples that are statistically unlikely to fall out-
of-distribution on almost all datasets, therefore concealing
attack. Nonetheless, our analysis also shows that ML-MAP
is capable of learning perturbations that can automatically
induce potential false positives and false negatives by indi-
rectly learning vulnerabilities in decision boundaries that can
increase confidence in irrelevant labels and reduce confidence
in relevant labels.
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