
Noname manuscript No.
(will be inserted by the editor)

Mutual Information for Feature Selection: Estimation or Counting?

Hoai Bach Nguyen · Bing Xue · Peter Andreae

the date of receipt and acceptance should be inserted later

Abstract In classification, feature selection is an important
pre-processing step to simplify the dataset and improve the
data representation quality, which makes classifiers become
better, easier to train, and understand. Because of an abil-
ity to analyse non-linear interactions between features, mu-
tual information has been widely applied to feature selec-
tion. Along with counting approaches, a traditional way to
calculate mutual information, many mutual information esti-
mations have been proposed to allow mutual information to
directly work in continuous datasets. This work focuses on
comparing the effect of counting approach and kernel den-
sity estimation (KDE) approach in feature selection using
particle swarm optimisation as a search mechanism. The ex-
perimental results on 15 different datasets show that KDE
can work well on both continuous and discrete datasets. In
addition, the feature subsets evolved by KDE achieves sim-
ilar or better classification performance than the counting
approach. Furthermore, the results on artificial datasets with
various interactions show that KDE is able to correctly cap-
ture the interaction between features, in both relevance and
redundancy, which can not be achieved by using the count-
ing approach.

Keywords Mutual information · Feature selection ·
Classification · Particle Swarm Optimisation

1 Introduction

Nowadays, under the development of technology, many real-
world problems have a large number of features, which causes

Hoai Bach Nguyen · Bing Xue · Peter Andreae
School of Engineering and Computer Science
E-mail: {Hoai.Bach.Nguyen,Bing.Xue,Peter.Andreae}@ecs.vuw.ac.nz
Victoria University of Wellington, PO Box 600, Wellington 6140,
New Zealand

difficulties to machine learning tasks, such as classification.
Particularly, there might be some noisy or irrelevant fea-
tures, which do not provide any useful information to the
class label and may also deteriorate the classification accu-
racy. In addition, some redundant features provide exactly
the same information as other features, which results in a
longer training time without any improvement in the classi-
fication performance. In such cases, feature selection is nec-
essary to reduce any imprecise, misleading and redundant
information.

Feature selection is typically a pre-processing step, which
selects a feature subset from the original feature set. The se-
lected features are expected to maintain or increase the use-
ful information about the class label over using all features.
Additionally, feature selection also aims to reduce the fea-
ture set size by removing redundant and irrelevant features.
A smaller number of features is useful to avoid “the curse of
dimensionality”, which leads to improvements in both qual-
ity and training speed of classification.

However, feature selection is not an easy task due to its
large search space. Suppose that there are n original fea-
tures, then the total number of possible feature subsets is 2n.
So the search space’s size exponentially grows with respect
to the number of features. An exhaustive search approach,
which considers all possible feature subsets, guarantees to
select an optimal feature subset. However, it is too slow
to perform in most cases. To improve the efficiency, some
greedy feature selection approaches are proposed, for in-
stance sequential forward selection (Whitney, 1971) and se-
quential backward selection (Marill and Green, 1963). How-
ever, these sequential searches usually get stuck at local op-
tima due to the complicated search space of feature selec-
tion. Evolutionary computation (EC) algorithms, such as ge-
netic algorithms (GAs), genetic programming (GP) or ant
colony optimisation (ACO), particle swarm optimisation (PSO),
have been well-known because of their global search ability,

2 Hoai Bach Nguyen et al.

which are suitable mechanisms to cope with large search
problems like feature selection. Therefore, recently EC has
been widely applied to feature selection,which can be seen
in a comprehensive survey about EC-based feature selection
algorithms done by Xue et al (2015). Among EC techniques,
PSO is preferred because it has a natural representation for
feature selection, in which each position entry corresponds
to an original feature. In addition, PSO also has fewer pa-
rameters and converges more quickly than other EC algo-
rithms. (Eberhart and Shi, 1998) showed that PSO is faster
than GAs to achieve the same performance.

Beside the huge search space, feature selection is a chal-
lenging task because of the complicated interactions between
features. On the one hand, two or more weakly relevant fea-
tures might become significantly useful when working with
each other, which is known as “complementary features”.
On the other hand, two relevant features might become re-
dundant when working with each other because they pro-
vide the same information. The feature interaction is hard
to capture because there can be multi-way interactions. A
good evaluation criterion of feature subsets needs to be able
to handle this difficulty. According to the evaluation cri-
terion, existing feature selection methods can be classified
into three main categories: wrapper, filter and embedded ap-
proaches (Dash and Liu (1997), Kohavi and John (1997)).
In a wrapper approach, a specific classification algorithm is
used to evaluate the selected feature subset. In other words,
the classification accuracy will reflect the goodness of a fea-
ture subset. Meanwhile, filter approaches, which are done
in an independent way of learning algorithms, use statis-
tic characteristics of the data to evaluate the feature sub-
set. Therefore, wrapper approaches usually achieve better
classification accuracy than filter approaches. However, the
filter approach has better generality, which means that its
selected features can be applied to different classification al-
gorithms rather than only a wrapped classification algorithm
like wrappers. Additionally, filters usually have less expen-
sive computation cost than wrappers because they do not
involve any classification process. In embedded approach,
the feature subset is selected during the training period for
a classification algorithm. An example of the embedded ap-
proach is the decision tree classification algorithm, in which
all features used in the trained tree are considered an impor-
tant feature subset.

Filter approaches have been investigated by many re-
searchers, who have proposed a large number of filter mea-
sures, such as Fisher score (Duda et al, 2012), Consistency
measure (Dash et al, 2000), Correlation measure (Hall, 2000)
and Mutual information (Kononenko, 1995). Among these
filter measures, mutual information gains more attention be-
cause it is able to detect non-linear correlation between fea-
tures. Further more, mutual information is capable to anal-
yse the interaction between multiple features while other fil-

ter measures, like correlation measure, are limited to two-
way interaction between features or between a single feature
and the class label. However, currently most of MI-based
feature selection algorithms count the number of instances
in a dataset to derive probability distributions and mutual
information. This counting approach can result in an inac-
curate mutual information when there are not enough in-
stances. In addition, the counting approach is applicable to
only discrete datasets. To overcome these limitations, sev-
eral estimation methods have been proposed to estimate mu-
tual information (Walters-Williams and Li, 2009). Recently,
we (Nguyen et al, 2016) proposed the first work, in which
mutual information estimation was worked with PSO to achieve
feature selection. The experimental results showed that mu-
tual information estimation could guide PSO to evolve better
feature subsets than the sequential search using the counting
approach. However, due to the page limit, the comparisons
between estimation approach and counting approach using
the same search mechanism were not conducted and the fea-
ture interaction information was not deeply analysed .

Therefore, this work will provide a detail comparison
between estimation and counting approach using PSO as a
search technique.

1.1 Goals

The overall goal of this paper is to extend our work in (Nguyen
et al, 2016) by inspecting mutual information estimation in
more detail. Specifically, we will investigate:

– whether mutual information estimation for feature se-
lection can work well on both discrete and continuous
datasets. Note that in this paper, a discrete dataset means
that its features are ordinal numeric features,

– whether mutual information estimation can achieve bet-
ter performance than counting in terms of the classifica-
tion performance and

– whether mutual information estimation can capture the
interactions between features better than the counting
approach.

2 Background

2.1 Particle Swarm Optimisation (PSO)

Particle Swarm Optimisation (PSO) is proposed by Kennedy
et al (1995), which is inspired from social behaviour such as
bird flocking and fish schooling. In PSO, a problem is op-
timised by using a set of particles, called a swarm. Each
particle is a candidate solution, which is represented by a
position in the search space. The particle moves around the
search space by using a velocity. Both particle’s velocity and
position are vectors of numbers, which have the same size

Mutual Information for Feature Selection: Estimation or Counting? 3

as the number of dimensionality of the search space. The
velocity of a particle is determined by its own best position,
called pbest, and its neighbours best position, called gbest.
Each velocity component is limited by a predefined max-
imum velocity, called vmax. The position and velocity of
particle i, denoted by x and v, are updated according to the
following equations:

vt+1
id = w∗vtid+c1∗ri1∗(pid−xtid)+c2∗ri2∗(pgd−xtid) (1)

xt+1
id = xtid + vt+1

id (2)

where t denotes the tth iteration in the search process, d is
the dth dimension in the search space, vtid and xtid represents
the dth entry of the ith’s velocity and position respectively,
w is an inertia weight, c1 and c2 are acceleration constants,
ri1 and ri2 are random values uniformly distributed in [0,1],
pid and pgd represent the position entry of pbest and gbest
in the dth dimension, respectively.

2.2 Information Theory

Entropy, one of the core concepts in information theory (Jaynes,
1957), is used to measure the uncertainty or the amount of
information of a random variable. Given X is a discrete vari-
able, its entropy can be calculated by the following formula:

H(X) = −
∑
x∈X

P (X = x) ∗ log2 P (X = x) (3)

Entropy can be extended to measure the uncertainty of
a joint variable, which consists more than one random vari-
ables. The joint entropy can be defined as:

H(X1, . . . , Xn) = −
∑

xi∈Xi
i=1...n

p(x1, . . . , xn)∗log2 p(x1, . . . , xn)

(4)

where p(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn)

Mutual information is another important concept in in-
formation theory. Mutual information is used to calculate the
common information between two random variables. Mu-
tual information is a symmetric measure, which is defined
as the following formula:

MI(X;Y) = H(X) +H(Y)−H(X,Y)

= −
∑

x∈X,y∈Y
p(x, y) ∗ log2

p(x, y)

p(x)p(y)
(5)

where p(x, y) is the joint probability distribution function.
According to Eq. (5), if X and Y are totally independent,
which means p(x, y) = p(x) ∗ p(y), then the mutual in-
formation between X and Y become 0. On the other hand, if
there is a strong relationship between X and Y then MI(X;Y)

will be large. If X and Y are two continuous variables, mu-
tual information is extended by replacing the summation by
a definite double integral as below:

MI(X;Y) =

∫
X

∫
Y

p(x, y) ∗ log2
p(x, y)

p(x)p(y)
dx dy (6)

where p(x), p(y) and p(x, y) are probability density func-
tions.

Mutual information is also extended in many ways to
measure the common information between more than two
random variables. Suppose that S is a joint variable, which
consists ofm single variables. Multi-variate information (MvI)
or interaction information is used to measure the common
between all variables’ information. The interaction informa-
tion of a joint variable S = {s1, . . . , sm} is calculated by the
Eq. (7).

MvI(S) = −
∑
U⊆S

(−1)|S|−|U |H(U) (7)

Meanwhile, there is another extension of MI, called “to-
tal correlation information” (TCI) (Alfonso et al, 2010),
which measures the common information between any vari-
able subsets of S. Since TCI can capture the interaction
between variables, it is more suitable for feature selection.
TCI can be computed by using the following equation:

TCI(S) =
∑
si∈S

H(si)−H(s1, s2, . . . , sm) (8)

where m is the total number of single feature/variable (si)
in the joint feature/variable (S).

2.3 Related Work on Feature Selection

2.3.1 Related Work to Feature Selection Using Non-EC
Techniques

A basic version of feature selection is feature ranking (Dash
and Liu, 1997), where a score is assigned to each feature ac-
cording to an evaluation criterion. Feature selection can be
achieved by selecting the features with the highest scores.
However, this type of algorithms ignores the interaction be-
tween features. Additionally, the features with the highest
scores are usually similar. Therefore, these algorithms tend
to select redundant features.

Sequential search techniques are also applied to solve
feature selection problems. In particular, sequential forward
selection (SFS) (Whitney, 1971) and sequential backward
selection (SBS) (Marill and Green, 1963) are proposed. At
each step of selection process, SFS (or SBS) adds (or re-
moves) a feature from an empty (full) feature set. Although

4 Hoai Bach Nguyen et al.

these local search techniques achieve better performance than
the feature ranking method, they might suffer “nesting” prob-
lem, in which once a feature is added (or removed) from the
feature set, it cannot be removed (or added) later. In order
to avoid nesting effect, Stearns (1976) proposed a “plus-l-
take away-r” method in which SFS was applied l times for-
ward and then SBS was applied for r back tracking steps.
However, it is challenge to determine the best values of (l,r).
This problem is addressed by sequential backward floating
selection (SBFS) and sequential forward floating selection
(SFFS), proposed by (Pudil et al, 1994). In SBFS ad SFFS,
the values (l, r) are dynamically determined rather than be-
ing fixed in the “plus-l-take away-r” method.

2.3.2 PSO-based Feature Selection

Many ideas have been proposed to improve the performance
of PSO-based feature selection algorithms. These ideas in-
clude modifications in the initialisation strategy, representa-
tion, fitness function or search mechanisms. Three initiali-
sation strategies, which followed the sequential feature se-
lection procedure, were proposed by Xue et al (2014). The
first mechanism initialised the swarm with a small number
of features. Meanwhile in the second mechanism, particles
were created by using a large number of original features. In
the “medium” strategy, the small initialisation was applied
to the majority of the swarm and the rest followed the large
initialisation. Besides initialisation, Xue et al (2014) also
proposed three updating mechanisms for gbest and pbest. In
comparison with the standard PSO and a two-stage PSO al-
gorithms (Xue et al, 2012b, 2013) the proposed mechanisms
evolved better feature subsets, which achieved higher clas-
sification performance with a smaller number of features.
Bharti and Singh (2016) proposed a PSO based feature se-
lection algorithm which applied opposition chaotic method.
Firstly, opposition chaotic was used to initialise the swarm
by selecting the top feature subsets which were generated
on two opposite sides. During the evolutionary phase, op-
position chaotic also helped to dynamically update the PSO
parameters and mutate gbest, which could avoid the stag-
nation in local optima. The experimental results on 3 text
datasets showed that the proposed algorithm could evolve
informative feature subsets with in short convergent times.

Along with initialisation, representation also played an
important role in PSO. A PSO representation was proposed
by Vieira et al (2013) to achieve feature selection and opti-
mise support vector machine kernel parameters at one time.
Besides bits for the original feature set, the new representa-
tion had additional bits for optimising the kernel parameters.
Therefore, the length of this representation was longer than
the traditional one. In comparison with other binary PSO
and GA based feature selection algorithms (Chuang et al,
2008; Lee et al, 2008; Huang and Wang, 2006), the pro-

posed algorithm evolved better feature subsets, which had
a smaller number of features and still achieved higher ac-
curacy. This representation was also applied in continuous
encoding (Lin et al, 2008) and a mixture of binary and con-
tinuous encoding (Boubezoul and Paris, 2012). Based on
statistical clustering, Lane et al (2013) proposed a represen-
tation for PSO. Firstly, all similar features were grouped in
one feature cluster. For each cluster, a single feature, which
was the representative for the cluster, was selected accord-
ing to the velocity of PSO’s particles. Therefore, the number
of selected features by the proposed algorithm was equal
to the total number of clusters. The idea was extended in
(Lane et al, 2014) by applying Gaussian distribution to al-
low more than one features selected from a cluster. Partic-
ularly, a Gaussian distribution was used to firstly determine
the number of selected features (m) from each cluster and
then m features with the highest velocity in a certain cluster
were selected. Later, Nguyen et al (2014b) also applied sta-
tistical clustering to proposed a new representation, which
had lower dimensionality than the traditional representation.
Particularly, a maximum number of selected features from
each cluster, which was smaller than the total features from
the cluster, was determined. Each bit string belonged to a
certain cluster and presented a feature index from the clus-
ter. The experimental results indicated that the proposed al-
gorithm achieved better classification performance and se-
lected a smaller number of features than two other PSO-
based algorithms. Although each bit in this representation
was a real number, the particle still could not move smoothly
in the continuous search space. This problem was addressed
by a transformation rule (Nguyen et al, 2015), which based
on the Gaussian distribution to form a smoother fitness land-
scape.

Premature convergence is a typical problem of PSO, in
which the swarm is stuck in local optima. In order to avoid
this problem, Chuang et al (2008) proposed a gbest reset-
ting mechanism, which set all gbest position’s elements to
zero when the best fitness did not change for a number of it-
erations. The experimental results showed that the resetting
mechanism helped PSO to evolve a smaller set of features
with higher classification accuracy than (Yang et al, 2008) in
most cases. Gbest resetting mechanism was also used with
local searches on pbest in (Tran et al, 2014) to further re-
duce the number of selected features while still improving
the classification accuracy. The efficiency of the proposed
feature selection algorithm was also improved by consider-
ing the changed features only. PSO was also used with other
search techniques to achieve feature selection. For instance,
in (Ghamisi and Benediktsson, 2015), PSO cooperated with
GAs during the evolutionary process to solve feature se-
lection problems. Particularly, in each iteration, the top in-
dividuals were selected to be enhanced by both PSO and
GAs. Therefore, in the next generation, half of the springs

Mutual Information for Feature Selection: Estimation or Counting? 5

were from PSO and the other half were produced by GA’s
crossover and mutation operations. The experimental results
show that the proposed algorithm could evolve informative
feature subsets in acceptable computation times.

2.3.3 Information Theory-based Feature Selection

Freeman et al (2015) did a comprehensive evaluation about
the effect of different filter measures on two common classi-
fication algorithms, k-nearest neighbour and support vector
machine. The experimental results showed that mutual in-
formation was able to evolve good feature subsets for both
classification algorithms.

Based on the idea of “Max-relevance and min-redundancy”
(Peng et al, 2005), mutual information was used to form fit-
ness functions, which aimed to find a feature subset with a
minimal redundancy within the subset and a maximal rele-
vance between the subset and the class label. Cervante et al
(2012) proposed two new information theory based fitness
functions. In the first fitness function, mutual information
between two selected features and between a selected fea-
ture and the class label (paired evaluation) were used to
respectively compute the relevance and redundancy of the
feature subsets. These measures were also combined in the
second fitness measure. However, in the second measure, in-
stead of using mutual information, information gain (group
evaluation) was used to calculate the relevance and redun-
dancy of the feature subset. The results showed that both fit-
ness functions successfully guided PSO to search for small
feature subsets, which achieve better classification accuracy
than using all features. The subset evolved by the first fitness
function is smaller than the one evolved by the second fit-
ness function. However the second algorithm achieved bet-
ter classification performance.

Multi-objective PSO was also combined with filter mea-
sures to form multi-objective feature selection approaches.
Xue et al (2012a) proposed two multi-objective PSO-based
feature selection algorithms, which simultaneously minimised
the number of selected features and maximised the relevance
of the selected feature subset. In these algorithms, the rele-
vant measure was calculated by applying either pair-wise
mutual information or information gain. The results illus-
trated that the proposed multi-objective algorithms outper-
formed single objective algorithms. Mutual information was
also applied in hybrid approaches, which took the advan-
tages of both filters and wrappers. For instance, Nguyen et al
(2014a) used mutual information as a measure to improve
gbest by applying a local search. The local search was sim-
ilar to backward feature selection since it tried to remove
selected features from gbest. The proposed algorithms se-
lected much smaller number of features while still achieved
similar or better performance than other PSO based algo-
rithms.

3 Mutual Information for Feature Selection

Since mutual information is able to detect non-linear inter-
action between multiple variables, it is widely applied to
feature selection. Most of mutual information based feature
selection approaches utilise mutual information to measure
the redundancy and relevance of a feature subset, using two
formulas, Eq. (9) and Eq. (10), respectively.

Red =MI(s1, s2, . . . , sm) (9)

Rel =MI(S,C) (10)

where C is the class label, S is the feature set, which con-
tains m features s1, . . . , sm.

The aim of feature selection is to produce an optimal
feature subset by removing all redundant and irrelevant fea-
tures. So the optimal feature subset minimise the quality
measure given in Eq. (11).

F = −α ∗Rel + (1− α) ∗Red (11)

where α is used to control the contribution of relevance and
redundancy into the fitness measure.

3.1 Counting approach for mutual information

According to Eq. (3) and Eq. (8), in order to calculate the
mutual information between two or more variables/features,
it is necessary to know the probability distribution of each
variable as well as the joint probability distribution. How-
ever, it is not a trivial task in real-world problems. In most
current approaches, the probability distribution is achieved
by counting the number of instances in the training set. Al-
though this approach is quite efficient, it is hard to apply it
to continuous datasets since each continuous variable has an
infinite number of values. So in order to be applied to contin-
uous datasets, counting approaches require an efficient and
effective way to discretise the datasets. Even with a discrete
dataset, counting approaches still can not produce an accu-
rate probability distribution of a joint of variables. Suppose
that each feature si in the feature set S has ni possible val-
ues, then the total number of possible values of the feature

set S is
m∏
i=1

ni. Therefore, in order to accurately calculate

the mutual information of a feature set, it usually requires a
huge number of instances in the training set. However this
requirement is hardly satisfied in real-world datasets, for in-
stance gene datasets can have up to thousands of features
but a small number of samples. To adapt with the privation
of samples, the relevance and redundancy measures are esti-
mated by decomposing them into pair-wise mutual informa-
tion, which can be seen in Eq. (12) and Eq. (13). As a result,
a feature subset is also evaluated by using pair-wise mutual
information as in Eq. (14).

6 Hoai Bach Nguyen et al.

Relpw =

m∑
i=1

MI(si, C) (12)

Redpw =

m−1∑
i=1

m∑
j=i+1

MI(si, sj) (13)

Fpw = −α ∗Relpw + (1− α) ∗Redpw (14)

In comparison with multi-variate mutual information, the
pair-wise mutual information has less expensive computa-
tion cost since only the probability distribution of two vari-
ables is required. However, pair-wise mutual information
can not capture the interaction between features. For ex-
ample, pair-wise mutual information can not figure out the
complementary feature set, in which two or more weakly-
relevant features might become highly-relevant when work-
ing with each other.

3.2 Estimation approach for mutual information

Pair-wise mutual information only considers two-way inter-
action between features. In addition, counting approach is
only applicable to discrete datasets. To overcome these lim-
itations, mutual information estimations have been devel-
oped. The oldest and simplest estimator is the “basic his-
togram” (Sturges, 1926), in which each dimension corre-
sponding to one variable is divided into many non-overlapping
bins with fixed size. The probability distribution of each
“bin” is calculated as a ratio between the number of obser-
vations falling into the bin and the total number of obser-
vations. Therefore, each bin is considered a possible value
of a single variable or a joint variable. The entropy of each
single/joint variable can be calculated by applying the dis-
cretised version given in Eq. (3) and then the mutual infor-
mation can be acquired according to the formula Eq. (5).
In this approach, there are two most important parameters,
which are the number of bins and the bin’s size.

The basic histogram is sensitive to the parameter selec-
tions. In addition, histogram approaches have sharp bound-
aries, which mean that two similar instances on different
sides of boundary are considered different values. To avoid
this discontinuity, Parzen (1962) proposed kernel density
estimation (KDE). This approach estimated the probability
density of each instance with a kernel function Θ, which is
shown in the Eq. (15).

p̂(Sj) =
1

N
∗

N∑
j′=1

Θ (|Sj − Sj′ | − r) (15)

where Θ is the kernel function and r is the kernel width, |.|
is a norm and N is the total number of instances.

The kernel function Θ measures the similarity between
two instances of feature set S, Sj and Sj′ . Normally, the Θ
is a step function, which means that Θ(X > 0) = 0 and
Θ(X ≤ 0) = 1. The norm |.| is the maximum norm. There-
fore, the probability estimated by Eq. (15) is the proportion
of the N instances, whose distances to the instance Si are
less than r. The entropy of the joint variable or feature sub-
set S is then achieved by averaging the local entropy of all
instances, which can be seen in the Eq. (16). The calculated
entropies are plugged in Eq. (5) to derive the mutual infor-
mation estimation.

Ĥ(S) =
1

N
∗

N∑
i=1

−p̂(Si) ∗ log p̂(Si) (16)

Beside KDE, recently Kraskov et al (2004) proposed an-
other estimation approach, called Nearest Neighbour esti-
mation (NNE). Similar to KDE, NNE also works on each
instance. The main idea of NNE is if neighbours of an in-
stance on two dimensions X and Y are similar, then there
must be a strong relationship between X and Y. Particularly,
for each instance, K nearest neighbours of an instance are
found to derive the distance ε, which is then used as a bound-
ary to define the neighbours of the instance on each dimen-
sion (feature). The mutual information is acquired by plug-
ging the number of neighbours on each dimension to Eq.
(17)

M̂I(S) = ψ(k)−m− 1

k
+(m−1)∗ψ(N)− 1

N
∗

N∑
i=1

m∑
j=1

nij

(17)

where m is the number of single variables (features) in the
variable (feature) set S, nij is the number of neighbours
whose distance from the ith instance Si in the space speci-
fied by dimension (feature) sj is not greater than 0.5∗ε(i) =
0.5 ∗max(εX1

(i), . . . , εXm
(i)).

Therefore, NNE can be seen as an improvement of KDE,
where the boundary r is dynamically determined by the num-
ber of nearest neighbours K. Both estimators are implemented
in Java Information Dynamics Toolkit (JIDT), an information-
theoretic toolkit developed by Lizier (2014). In terms of com-
putation cost, NNE is more expensive than KDE. Particu-
larly, NNE’s computation cost is O(KN2), where N is the
total number of instances. Although JIDT implements k-d
tree algorithm to faster search for nearest neighbours, its cost
is still O(KNlog(N)), which is more expensive than KDE,
whose time-complexity is only O(N) with box-assisted meth-
ods.

This work will compare between two ways to compute
mutual information, including the counting approach and

Mutual Information for Feature Selection: Estimation or Counting? 7

Table 1: Datasets

Dataset Type #Fs #Cs #Is

Real-world
datasets

Wine Con 13 3 178
Vehicle Dis 18 4 946
German Dis 24 2 1000
WBCD Con 30 2 569

Ionosphere Con 34 2 351
Sonar Con 60 2 208

Musk 1 Dis 166 2 476
Arrhythmia Dis 279 16 452

Artificial
datasets

Binary 1 Dis 3 2 8
Binary 2 Dis 3 2 8
Monk 1 Dis 6 2 432
Monk 2 Dis 6 2 432
Monk 3 Dis 6 2 432

2-way linear Con 4 2 200
3-way linear Con 4 2 200

the estimation approach. The KDE is chosen as the rep-
resentative of estimation approaches because it is simpler,
easier to understand and faster than NNE, which was used
in (Nguyen et al, 2016). PSO is chosen as a feature subset
generation. Each feature subset is evaluated using the pair-
wise fitness measure shown in Eq. (14), where both counting
approach and KDE can be applied.

3.3 PSO representation for feature selection

The representation of a particle in PSO is a vector of n real
numbers, where n is the total number of features. Each posi-
tion entry xid falls in the range [0,1] and corresponds to the
dth feature in the original feature set. A threshold θ is used
to determine whether or not a feature is selected: if xid > θ

then the dth feature is selected, otherwise the dth feature is
not selected.

4 Design of Experiments

4.1 Datasets

In this work, KDE and counting approach will be compared
in both artificial and real-world datasets. All datasets can be
seen in the Table 1, where “Con” and “Dis” mean respec-
tively continuous and discrete datasets, #Fs means the total
number of features, #Cs means the total number of class
values and #Is is the total number of available instances.
There are 8 real-world datasets, which are original from UCI
repository (Asuncion and Newman, 2007). These datasets
contain different number of features and instances. The con-
tinuous datasets are discretised so that the counting approach
can be applied.

There are 7 different artificial datasets, which have dif-
ferent relationships between features and between features
and the class labels. The first two artificial datasets have

three binary features. In Binary 1, an instance belongs to
class 1 if exactly two features have value 1, otherwise the
instance is in class 0. In Binary 2, if all instances’ features
have the same value then it is in class 1, otherwise it belongs
to class 0. So in these two datasets, there is no redundancy
and all three features are relevant to the class label. Feature
selection on these datasets should select all three features.

Three other artificial datasets are Monk datasets (Asun-
cion and Newman, 2007), which have 6 discrete features and
one binary class label. The 3rd and 6th features are binary
variables, which can be either 1 or 2. The 5th feature has
four possible values from 1 to 4. The other features have
three values, which range from 1 to 3. In Monk 1 dataset,
the class label is 1 if either f0 = f1 or f4 = 1. So the
optimal feature set of Monk 1 is {f0, f1, f4}. Meanwhile,
in Monk 2, the class label is 1 if there are exactly two fea-
tures taking value 1. In this case, all features are important
in Monk 2 dataset. The last Monk dataset is a bit more com-
plicated, where the class label is 1 if (f3 = 1 and f4 = 3)
or (f4 6= 4 and f1 6= 3). So in Monk 3 datasets, the most
important feature subset is {f1, f3, f4}. Notice that there is
no redundancy in the Monk datasets.

2-way linear and 3-way linear also have 4 continuous
features. In 2-way linear, the last two features are copies of
the first two features (f0 = f2, f1 = f3). The class label is
set to 1 if the average of the first two features is greater than
0.5. Therefore, the optimal feature subset for this dataset
is one of 4 feature subsets, {f0, f1}, {f0, f3},{f1, f2} or
{f2, f3}. In 3-way linear dataset, the first two features are
two random variables, which fall in [0,1]. The 3rd feature

is the average of the first two features, f2 =
f0 + f1

2
. The

4th feature (f3) is just a copy of the first feature. So in this
dataset, there is redundancy in any feature subsets that con-
tains f0 along with f3 or (f1 and f2). The class label is de-
termined by feature f2. Particularly, the class label is set to
1 if f2 > 0.5. So the optimal feature subset for this dataset
is {f2}.

4.2 Parameter setting

Each dataset is divided into 10 folds. Each fold will be se-
lected as a test set and the other folds are used as a train-
ing set to select features. This process is run 30 independent
times. So there will be 300 evolved feature subsets. Since
each dataset has continuous and discrete versions, the se-
lected feature subsets are tested on both version using three
classification algorithms K-nearest neighbour (K=5) (KNN),
Decision Tree (DT) and Naive Bayes (NB).

The kernel width r needs to satisfy the condition Kr ≤
N/(3/r)m, whereKr is the number of neighbours fall in the
range r andm is the number of dimensions or the number of
features and N is the total number of instances. In this case,

8 Hoai Bach Nguyen et al.

since only pair-wise mutual information is used, the number
of dimensions m is 2. Lungarella et al (2005) proposed that
Kr should be at least equal to 3 to avoid undersampling ef-
fects. Therefore, in this work Kr is set to 3. From the above

conditions, the kernel width r is specified by
3

log2N/3
.

The weight α in the pair-wise fitness measure (Eq. (14))
has three different values: 0.6, 0.8 and 1.0 to evaluate the
effect of different relevance and redundancy’s contributions.

For PSO algorithm, the fully connected topology is used.
The parameters are set as follows (Van Den Bergh, 2006):
w = 0.7298, c1 = c2 = 1.49618, vmax = 6.0. The popula-
tion size is 30 and the maximum number of iterations is 100.
The threshold θ is set as 0.6.

5 Results and Discussion

Experimental results on real-world and artificial datasets are
shown in Tables 2 and 3, respectively. Each table is the re-
sults of PSO using counting and KDE approach on a dataset.
The prefix “Con-” and “Dis-” correspond to the results on
the continuous and discrete versions of each dataset. The
significant test between KDE and counting approach is shown
in the brackets, beside KDE’s accuracies. “+”, “=” or “-”
mean that KDE approach is respectively significantly better,
similar or significantly worse than counting approach. Ta-
ble 4 shows which features are selected by either KDE or
counting approaches on artificial datasets.

5.1 Real-world datasets

The results on the 8 real-world datasets are shown in Table
2.

5.1.1 Consistency of KDE and Counting Approach

As can be seen from the results, in most datasets the order
of classification accuracies is preserved after the feature se-
lection process. For example, in Vehicle dataset, the highest
classification accuracy belongs to DT classifier and KNN is
the second best classifier. After performing feature selection
using either KDE or counting approach, the best classifier is
still DT, which is followed by KNN. This consistency is an
evident that mutual information is not bias to any classifi-
cation algorithm among the three classification algorithms.
Mutual information is able to extract a general feature sub-
set, which is meaningful to all the three classification algo-
rithms.

5.1.2 KDE vs Counting approach on Real-world Datasets

In terms of the classification accuracy, KDE is significantly
better than counting approach in the continuous version of

most of datasets. For example, in the Wine dataset, the clas-
sification accuracy of KDE is about 10% better than count-
ing approach on both DT and NB classification algorithms.
In addition, in the Ionosphere and Sonar datasets, by apply-
ing to KNN classification algorithm, the feature subsets gen-
erated by KDE achieve up to 10% better than counting ap-
proach regardless the similar number of selected features. In
WBCD, KDE is significantly better than counting approach
in all the three classification algorithms when α is set to 0.6
and 0.8. In summary, on the continuous version of datasets,
in almost all cases KDE achieves similar or better perfor-
mance than counting approach in the three classification al-
gorithms.

On the discrete version of each dataset, KDE also achieves
similar or better performance than counting approach. In
most cases, KDE outperforms counting approach when α

is set to 0.8. For example, in Vehicle dataset (Table (2b)),
the improvements of KDE over counting method on KNN,
DT and NB are 4.5%, 4% and 7% respectively. Despite of
selecting the same number of features, with α = 0.8, KDE’s
accuracies on all the three classification algorithms are up to
1% higher than the results of counting approach. The exper-
imental results show that KDE is not only able to cope with
both continuous and discrete datasets but also similar or bet-
ter than the counting approach, which only works well with
discrete datasets.

In terms of the number of selected features, when α in-
creases, which means the contribution of redundancy into
the fitness function decreases, the number of selected fea-
tures of both approaches also increases. The extreme case
is when redundancy is ignored (α = 1.0), in the datasets
with small number of features, almost all original features
are selected. Meanwhile, when the number of original fea-
tures is larger, the proportion of selected features is smaller.
The reason might be a dataset with a large number of fea-
tures might contains many irrelevant features. However, the
smaller number of selected features with respect to lower
contribution of redundancy does not mean that redundancy
measure Redpw works well in this case. The reason is that
Redpw, which is shown in Eq. (13), is a monotonic function.
Regardless of which features are selected, according to Eq.
(13) adding any feature into the feature subset will results in
additional MI, which might increases Redpw because mu-
tual information is non-negative. So in this case, it only can
be confirmed that PSO does find out optimal or near-optimal
feature subsets when α = 1.0. It would be hard to analyse
the effect of Relpw and Redpw in the real datasets since the
optimal feature subset is unknown. Therefore, a deep analy-
sis on the artificial datasets is provided in the next section.

Mutual Information for Feature Selection: Estimation or Counting? 9

Table 2: Test accuracies on real-world datasets.

(a) Wine

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 13 94.38 80.94 86.86 13 93.25 97.76 97.78

0.6 Counting 1.0 82.52 80.48 67.72 2.24 92.58 93.06 92.7
KDE 2.56 92.84(+) 81.69(=) 75.71(+) 2.24 92.42(=) 93.01(=) 92.63(=)

0.8 Counting 1.0 83.12 81.17 67.9 4.98 93.72 96.91 96.3
KDE 4.98 95.61(+) 80.98(=) 81.15(+) 4.98 93.74(=) 96.79(=) 96.31(=)

1.0 Counting 11.92 94.48 80.81 85.84 11.99 93.45 97.08 97.39
KDE 11.95 94.51(=) 80.76(=) 86.04(=) 12.01 93.46(=) 97.06(=) 97.33(=)

(b) Vehicle

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 18 85.93 83.04 81.32 18 85.93 83.04 81.32

0.6 Counting 1.02 75.8 75.01 71.12 1.02 75.8 75.01 71.12
KDE 1.97 75.17(-) 74.41(=) 74.39(+) 1.97 75.17(-) 74.41(=) 74.39(+)

0.8 Counting 1.18 76.96 76.07 71.73 1.18 76.96 76.07 71.73
KDE 3.83 81.43(+) 80.1(+) 78.69(+) 3.83 81.43(+) 80.1(+) 78.69(+)

1.0 Counting 15.96 85.49 82.47 81.18 15.96 85.49 82.47 81.18
KDE 16.25 85.43(=) 82.46(=) 81.33(=) 16.25 85.43(=) 82.46(=) 81.33(=)

(c) German

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 24 74.2 68.2 73.5 24 74.2 68.2 73.5

0.6 Counting 3.2 70.11 67.53 70.66 3.2 70.11 67.53 70.66
KDE 3.02 70.88(+) 68.36(=) 71.33(+) 3.02 70.88(+) 68.36(=) 71.33(+)

0.8 Counting 4.97 71.81 70.09 72.39 4.97 71.81 70.09 72.39
KDE 5.03 72.4(+) 71.0(+) 72.97(+) 5.03 72.4(+) 71.0(+) 72.97(+)

1.0 Counting 19.76 73.95 68.69 73.18 19.76 73.95 68.69 73.18
KDE 19.98 74.21(=) 68.95(=) 73.58(=) 19.98 74.21(=) 68.95(=) 73.58(=)

(d) WBCD

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 30 94.73 93.32 88.57 30 91.91 96.49 94.38

0.6 Counting 1.37 88.21 87.32 75.93 2.07 92.09 91.74 92.73
KDE 2.14 91.81(+) 90.31(+) 84.76(+) 2.07 92.07(=) 91.75(=) 92.73(=)

0.8 Counting 1.9 90.25 89.93 80.72 4.21 93.0 94.39 94.87
KDE 3.79 93.49(+) 90.9(+) 89.26(+) 4.2 93.02(=) 94.41(=) 94.85(=)

1.0 Counting 24.96 94.14 92.94 88.49 25.01 92.31 96.06 94.19
KDE 24.83 94.21(=) 93.04(=) 88.79(=) 25.0 92.35(=) 96.07(=) 94.18(=)

(e) Ionosphere

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 34 89.17 84.33 35.9 34 90.87 85.19 90.58

0.6 Counting 2.4 81.52 79.7 81.17 2.31 84.89 84.49 84.65
KDE 2.37 84.1(+) 84.71(+) 83.3(+) 2.25 84.75(=) 84.42(=) 84.54(=)

0.8 Counting 2.65 80.01 78.01 81.68 4.03 88.93 89.11 89.22
KDE 4.08 87.75(+) 88.12(+) 80.86(=) 4.0 88.89(=) 89.17(=) 89.24(=)

1.0 Counting 27.87 88.53 83.73 35.9 27.55 90.59 84.89 90.55
KDE 27.75 89.03(=) 84.14(+) 35.9(=) 27.59 90.65(=) 84.89(=) 90.56(=)

(f) Sonar

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 60 74.0 80.17 50.38 60 72.57 85.07 75.98

0.6 Counting 1.57 57.48 56.88 51.86 2.11 63.87 62.06 64.29
KDE 2.18 61.7(+) 62.03(+) 52.32(=) 2.13 63.41(=) 61.64(=) 63.83(=)

0.8 Counting 1.58 57.27 57.87 52.09 2.69 68.3 67.11 68.38
KDE 2.67 67.21(+) 67.05(+) 50.64(=) 2.69 68.46(=) 67.05(=) 68.58(=)

1.0 Counting 46.29 72.96 80.22 51.11 45.99 73.13 83.75 75.19
KDE 45.79 72.81(=) 80.54(=) 50.02(-) 45.91 73.35(+) 83.66(=) 75.15(=)

10 Hoai Bach Nguyen et al.

(g) Musk1

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 166 74.59 86.97 65.36 166 64.59 86.97 65.36

0.6 Counting 11.21 73.13 76.46 68.91 11.2 73.11 76.51 68.98
KDE 11.81 73.67(=) 76.91(=) 68.03(=) 11.81 73.67(=) 76.91(=) 68.03(=)

0.8 Counting 11.19 73.05 76.31 69.23 11.24 73.17 76.4 69.28
KDE 12.06 73.65(=) 76.92(=) 68.28(=) 12.06 73.65(=) 76.92(=) 68.28(=)

1.0 Counting 113.27 75.59 85.9 74.89 113.27 75.59 85.93 74.89
KDE 113.7 75.1(=) 86.01(=) 74.92(=) 113.7 75.1(=) 86.01(=) 74.92(=)

(h) Arrhythmia

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 278 94.86 93.57 94.96 278 94.86 93.57 94.96

0.6 Counting 41.85 93.71 93.3 93.75 41.85 93.71 93.3 93.75
KDE 41.79 93.71(=) 93.29(=) 93.75(=) 41.79 93.71(=) 93.29(=) 93.75(=)

0.8 Counting 42.42 93.91 93.48 93.85 42.42 93.91 93.48 93.85
KDE 42.24 93.89(=) 93.5(+) 93.84(=) 42.24 93.89(=) 93.5(+) 93.84(=)

1.0 Counting 174.63 94.67 93.75 95.01 174.63 94.67 93.75 95.01
KDE 174.67 94.67(=) 93.75(=) 95.01(=) 174.67 94.67(=) 93.75(=) 95.01(=)

5.2 Artificial datasets

Tables 3 and 4 show respectively the test accuracies and the
feature subsets selected by applying Counting and KDE al-
gorithms on 7 artificial datasets. The results of two datasets
Binary 1 and Binary 2 are not shown because DT, KNN and
NB are not able to classify the problems (0% accuracy). In
terms of classification accuracy, as can be seen from table
3, KDE achieves similar of significantly better results than
counting approach. The largest difference between the two
approaches is in Monk 1 dataset, where KDE’s accuracies
are about 25% better than counting’s accuracies.

The more important factor to be considered in the ar-
tificial datasets is the feature subsets evolved. For each α
value, feature selection algorithms are run 30 times on each
dataset. Each independent run uses 10-folds approach. There-
fore there will be 300 (30×10) feature subsets generated
for each α value and each dataset. The feature subsets se-
lected by KDE and counting approaches are shown in Table
4. In the table all indexes of selected features are in the curly
brackets, which follows by the number of times the feature
subset is selected. For example,

〈
{0, 1, 2, 3} : 300

〉
means

that the feature subset {0, 1, 2, 3} are selected 300 times.

In two Binary datasets, the optimal set is the original
feature set. According to the experimental results, regard-
less of the values of α, the original feature set is selected
by KDE in more than 98% of the 300 times. Because there
is no redundancy in these datasets, the α values should not
affect on the evolved feature subsets. Therefore, the redun-
dancy measured by KDE works well in this case. For count-
ing approach, the proportion of the original feature set to all
feature subset ranges from 20% to 100% when α increases
from 0.6 to 1.0. When redundancy contributes to the fitness
function, counting approach still results in a smaller set than

the optimal set regardless of the fact that redundancy should
be 0. Therefore, it can be seen that redundancy measure by
counting approach does not work well in Binary datasets.
Particularly, redundancy between two independent feature,
measured by counting approach is greater than 0.

In Monk 1 dataset, the optimal feature subset is {f0, f1,
f4} and there is no redundancy in this dataset. Three fea-
tures f2, f3 and f5 are irrelevant to the class label. Once
more, since the redundancy in this dataset is 0, the α values
should not affect on the selected feature subsets. This fact
is completely reflected by the KDE approach, which selects
the optimal subset {f0, f1, f4} all the 300 times. Meanwhile,
counting approach selects very different feature subsets even
within the same α values. In all α values, f2 and f3 appears
frequently in the feature subsets, which indicates that the
relevance measure by counting approach still gives some
score to these irrelevant features. An obvious evidence is
that the counting approach selects all features when α = 1,
which means the irrelevant features are selected. For Monk
2 datasets, it is important to select all original features. Ac-
cording to the experimental results, for all values of α, KDE
always selects no less than 5 features, in which all features
are selected more than 280 times out of the 300 times. Mean-
while, the size of feature subset selected by the counting ap-
proach ranges from 3 to 6 features. In Monk 3 dataset, the
most complicated Monk dataset, the optimal feature subset
is {f1, f3, f4}, which is also selected by KDE in all cases re-
gardless of the α values. Meanwhile, the counting approach
still selects irrelevant features like f0, f2 and f5 very fre-
quently. So with the Monk datasets, it can be seen that the
counting approach is not able to detect irrelevant features,
but this is done very well by the KDE approach.

In the rest two artificial datasets, 2-way and 3-way linear
datasets, there is no irrelevant feature but there are redundant

Mutual Information for Feature Selection: Estimation or Counting? 11

Table 3: Test accuracies on artificial datasets.

(a) Monk 1

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 6 85.87 94.21 75.0 6 85.87 94.21 75.0

0.6 Counting 1.59 75.0 63.22 75.0 1.59 75.0 63.22 75.0
KDE 3.0 99.77(+) 100.0(+) 75.0(=) 3.0 99.77(+) 100.0(+) 75.0(=)

0.8 Counting 2.79 75.0 66.79 75.0 2.79 75.0 66.79 75.0
KDE 3.0 99.77(+) 100.0(+) 75.0(=) 3.0 99.77(+) 100.0(+) 75.0(=)

1.0 Counting 5.94 85.88 93.2 75.0 5.94 85.88 93.2 75.0
KDE 3.0 99.77(+) 100.0(+) 75.0(=) 3.0 99.77(+) 100.0(+) 75.0(=)

(b) Monk 2

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 6 79.63 69.46 66.45 6 79.63 69.46 66.45

0.6 Counting 4.67 65.96 57.58 66.26 4.67 65.96 57.58 66.26
KDE 5.94 78.92(+) 68.7(+) 66.48(+) 5.94 78.92(+) 68.7(+) 66.48(+)

0.8 Counting 5.24 69.83 62.04 66.24 5.24 69.83 62.04 66.24
KDE 5.94 78.92(+) 68.7(+) 66.48(+) 5.94 78.92(+) 68.7(+) 66.48(+)

1.0 Counting 5.95 78.84 68.74 66.46 5.95 78.84 68.74 66.46
KDE 5.94 78.92(=) 68.7(=) 66.48(=) 5.94 78.92(=) 68.7(=) 66.48(=)

(c) Monk 3

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 6 100.0 99.54 97.23 6 100.0 99.54 97.23

0.6 Counting 3.29 100.0 100.0 97.23 3.29 100.0 100.0 97.23
KDE 3.0 100.0(=) 100.0(=) 97.23(=) 3.0 100.0(=) 100.0(=) 97.23(=)

0.8 Counting 3.97 100.0 100.0 97.23 3.97 100.0 100.0 97.23
KDE 3.0 100.0(=) 100.0(=) 97.23(=) 3.0 100.0(=) 100.0(=) 97.23(=)

1.0 Counting 5.97 100.0 99.53 97.23 5.97 100.0 99.53 97.23
KDE 3.0 100.0(=) 100.0(+) 97.23(=) 3.0 100.0(=) 100.0(+) 97.23(=)

(d) 2-way linear

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 4 92.5 94.5 46.0 4 92.5 94.5 46.0

0.6 Counting 1.0 69.5 69.3 54.0 1.0 69.5 69.3 54.0
KDE 2.0 92.5(+) 94.5(+) 54.0(=) 2.0 92.5(+) 94.5(+) 54.0(=)

0.8 Counting 1.0 69.5 69.3 54.0 1.0 69.5 69.3 54.0
KDE 2.0 92.5(+) 94.5(+) 54.0(=) 2.0 92.5(+) 94.5(+) 54.0(=)

1.0 Counting 4.0 92.5 94.5 46.0 4.0 92.5 94.5 46.0
KDE 2.0 92.5(=) 94.5(=) 54.0(+) 2.0 92.5(=) 94.5(=) 54.0(+)

(e) 3-way linear

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB
Full 4 99.5 95.5 52.0 4 99.5 95.5 52.0

0.6 Counting 1.0 80.4 76.13 48.0 1.0 80.4 76.13 48.0
KDE 2.8 99.5(+) 95.0(+) 48.0(=) 2.8 99.5(+) 95.0(+) 48.0(=)

0.8 Counting 1.0 80.4 76.13 48.0 1.0 80.4 76.13 48.0
KDE 2.8 99.5(+) 95.0(+) 48.0(=) 2.8 99.5(+) 95.0(+) 48.0(=)

1.0 Counting 4.0 99.5 95.5 52.0 4.0 99.5 95.5 52.0
KDE 2.8 99.5(=) 95.0(-) 48.0(-) 2.8 99.5(=) 95.0(-) 48.0(-)

features. In 2-way linear dataset, the class label can be de-
termined by one of the following feature subsets {f0, f1},
{f0, f3}, {f1, f2} and {f2, f3}, which are also the only 4
feature subsets selected by KDE. On the other hand, the
counting approach always select a single feature when α is
set to 0.6 or 0.8. Once more the result shows that the re-
dundancy between two independent features is not correctly

calculated by the counting approach. In addition, KDE ap-
proach is able to detect the complementary feature subsets,
although it is a hard problem when pair-wise fitness function
is used. In the 3-way linear dataset, once more the counting
approach always select a single feature when α is less than
1.0. On the other hand, KDE selects only 4 feature subsets,
which are {f1,f2,f3}, {f0,f1,f2}, {f0,f1} and {f1, f3}. As

12 Hoai Bach Nguyen et al.

Table 4: Feature sets selected by KDE and Counting approaches.

(a) Binary 1

Counting KDE
α =0.6

〈
{0, 1, 2} : 90

〉
,
〈
{0, 1} : 73

〉
,
〈
{1, 2} : 46

〉
,
〈
{2} :

30
〉
,
〈
{0} : 30

〉
,
〈
{1} : 30

〉
,
〈
{0, 2} : 1

〉
,

〈
{0, 1, 2} : 293

〉
,
〈
{0} : 3

〉
,
〈
{1} : 3

〉
,
〈
{2} : 1

〉
,

α =0.8
〈
{0, 1, 2} : 210

〉
,
〈
{0, 1} : 42

〉
,
〈
{0, 2} : 39

〉
,
〈
{1, 2} :

9
〉
,

〈
{0, 1, 2} : 297

〉
,
〈
{1} : 2

〉
,
〈
{2} : 1

〉
,

α =1.0
〈
{0, 1, 2} : 300

〉
,

〈
{0, 1, 2} : 297

〉
,
〈
{2} : 1

〉
,
〈
{0} : 1

〉
,
〈
{1} : 1

〉
,

(b) Binary 2

Counting KDE
α =0.6

〈
{0} : 100

〉
,
〈
{2} : 85

〉
,
〈
{0, 1, 2} : 60

〉
,
〈
{1} : 35

〉
,〈

{1, 2} : 10
〉
,
〈
{0, 1} : 8

〉
,
〈
{0, 2} : 2

〉
,

〈
{0, 1, 2} : 300

〉
,

α =0.8
〈
{0, 2} : 75

〉
,
〈
{0, 1} : 68

〉
,
〈
{0, 1, 2} : 61

〉
,
〈
{1, 2} :

58
〉
,
〈
{2} : 17

〉
,
〈
{0} : 15

〉
,
〈
{1} : 6

〉
,

〈
{0, 1, 2} : 300

〉
,

α =1.0
〈
{0, 1, 2} : 240

〉
,
〈
{2} : 18

〉
,
〈
{0} : 15

〉
,
〈
{1, 2} : 9

〉
,〈

{0, 1} : 8
〉
,
〈
{1} : 8

〉
,
〈
{0, 2} : 2

〉
,

〈
{0, 1, 2} : 300

〉
,

(c) Monk 1

Counting KDE
α =0.6

〈
{4} : 122

〉
,
〈
{3, 4} : 118

〉
,
〈
{1, 4} : 57

〉
,
〈
{2, 4} : 3

〉
,

〈
{0, 1, 4} : 300

〉
,

α =0.8
〈
{0, 3, 4} : 60

〉
,
〈
{1, 2, 4} : 39

〉
,
〈
{4} : 30

〉
,
〈
{1, 4} :

30
〉
,
〈
{3, 4} : 30

〉
,
〈
{0, 2, 4, 5} : 30

〉
,
〈
{3, 4, 5} : 30

〉
,〈

{1, 2, 3, 4} : 28
〉
,
〈
{2, 3, 4} : 19

〉
,
〈
{2, 4, 5} : 2

〉
,〈

{1, 3, 4} : 2
〉
,

〈
{0, 1, 4} : 300

〉
,

α =1.0
〈
{0, 1, 2, 3, 4, 5} : 281

〉
,

〈
{0, 1, 2, 3, 4} : 6

〉
,〈

{1, 2, 3, 4, 5} : 4
〉
,

〈
{0, 2, 3, 4, 5} : 4

〉
,〈

{0, 1, 3, 4, 5} : 4
〉
,
〈
{0, 1, 2, 4, 5} : 1

〉
,

〈
{0, 1, 4} : 300

〉
,

(d) Monk 2

Counting KDE
α =0.6

〈
{0, 1, 3, 4} : 98

〉
,

〈
{0, 1, 2, 3, 4} : 59

〉
,〈

{0, 1, 2, 3, 4, 5} : 59
〉
,

〈
{0, 1, 3, 4, 5} : 54

〉
,〈

{0, 1, 3} : 28
〉
,
〈
{0, 1, 4} : 2

〉
,

〈
{0, 1, 2, 3, 4, 5} : 282

〉
,

〈
{0, 2, 3, 4, 5} : 7

〉
,〈

{0, 1, 2, 3, 5} : 6
〉
,

〈
{0, 1, 2, 4, 5} : 4

〉
,〈

{0, 1, 2, 3, 4} : 1
〉
,

α =0.8
〈
{0, 1, 2, 3, 4, 5} : 114

〉
,

〈
{0, 1, 3, 4, 5} : 81

〉
,〈

{0, 1, 2, 3, 4} : 62
〉
,
〈
{0, 1, 3, 4} : 42

〉
,
〈
{0, 1, 3, 5} :

1
〉
,

〈
{0, 1, 2, 3, 4, 5} : 282

〉
,

〈
{0, 2, 3, 4, 5} : 7

〉
,〈

{0, 1, 2, 3, 5} : 6
〉
,

〈
{0, 1, 2, 4, 5} : 4

〉
,〈

{0, 1, 2, 3, 4} : 1
〉
,

α =1.0
〈
{0, 1, 2, 3, 4, 5} : 285

〉
,

〈
{0, 1, 2, 3, 4} : 11

〉
,〈

{0, 1, 3, 4, 5} : 4
〉
,

〈
{0, 1, 2, 3, 4, 5} : 282

〉
,

〈
{0, 2, 3, 4, 5} : 7

〉
,〈

{0, 1, 2, 3, 5} : 6
〉
,

〈
{0, 1, 2, 4, 5} : 4

〉
,〈

{0, 1, 2, 3, 4} : 1
〉
,

(e) Monk 3

Counting KDE
α =0.6

〈
{1, 3, 4} : 214

〉
,
〈
{1, 3, 4, 5} : 57

〉
,
〈
{1, 2, 3, 4} : 29

〉
,

〈
{1, 3, 4} : 300

〉
,

α =0.8
〈
{1, 2, 3, 4} : 88

〉
,
〈
{1, 3, 4, 5} : 87

〉
,
〈
{1, 3, 4} :

66
〉
,
〈
{0, 1, 2, 3, 4} : 28

〉
,
〈
{0, 1, 3, 4, 5} : 28

〉
,〈

{0, 1, 3, 4} : 3
〉
,

〈
{1, 3, 4} : 300

〉
,

α =1.0
〈
{0, 1, 2, 3, 4, 5} : 290

〉
,

〈
{0, 1, 2, 3, 4} : 6

〉
,〈

{1, 2, 3, 4, 5} : 4
〉
,

〈
{1, 3, 4} : 300

〉
,

(f) 2-way linear

Counting KDE
α =0.6

〈
{0} : 110

〉
,
〈
{3} : 80

〉
,
〈
{2} : 70

〉
,
〈
{1} : 40

〉
,

〈
{2, 3} : 110

〉
,
〈
{1, 2} : 81

〉
,
〈
{0, 1} : 60

〉
,
〈
{0, 3} :

49
〉
,

α =0.8
〈
{0} : 110

〉
,
〈
{3} : 80

〉
,
〈
{2} : 70

〉
,
〈
{1} : 40

〉
,

〈
{2, 3} : 110

〉
,
〈
{1, 2} : 80

〉
,
〈
{0, 1} : 60

〉
,
〈
{0, 3} :

50
〉
,

α =1.0
〈
{0, 1, 2, 3} : 300

〉
,

〈
{2, 3} : 110

〉
,
〈
{1, 2} : 80

〉
,
〈
{0, 1} : 60

〉
,
〈
{0, 3} :

50
〉
,

Mutual Information for Feature Selection: Estimation or Counting? 13

(g) 3-way linear

Counting KDE
α =0.6

〈
{0} : 110

〉
,
〈
{3} : 80

〉
,
〈
{2} : 70

〉
,
〈
{1} : 40

〉
,

〈
{1, 2, 3} : 144

〉
,
〈
{0, 1, 2} : 96

〉
,
〈
{0, 1} : 32

〉
,〈

{1, 3} : 28
〉
,

α =0.8
〈
{0} : 110

〉
,
〈
{3} : 80

〉
,
〈
{2} : 70

〉
,
〈
{1} : 40

〉
,

〈
{1, 2, 3} : 144

〉
,
〈
{0, 1, 2} : 96

〉
,
〈
{0, 1} : 32

〉
,〈

{1, 3} : 28
〉
,

α =1.0
〈
{0, 1, 2, 3} : 300

〉
,

〈
{1, 2, 3} : 144

〉
,
〈
{0, 1, 2} : 96

〉
,
〈
{0, 1} : 32

〉
,〈

{1, 3} : 28
〉
,

Table 5: Computation time on real-world datasets

Datset KDE time (ms) Counting time (ms)
Wine 344.49 38.74
Vehicle 244.7 1.64
German 145.45 2.19
Wbcd 6288.96 88.69
Ionosphere 4941.29 98.97
Sonar 6819.77 187.77
Musk1 253546.83 424.43
Arrhythmia 4020.61 36.22
Binary 1 0.77 0.5
Binary 2 0.75 0.46
Monk 1 39.49 0.55
Monk 2 69.78 0.64
Monk 3 43.83 0.55
2-way linear 8.01 0.45
3-way linear 11.11 0.57

can be seen KDE never selects f0 and f3 together because
they are redundant. According to the linear datasets, KDE
is able to detect the complementary feature subset and re-
move the redundant features, which can not be done by the
counting approach.

The experimental results suggests that KDE for mutual
information works well on both continuous and discrete datasets.
The feature subsets generated by KDE achieve similar or
better performance than the counting approach. The main
reason is the counting approach can not correctly calculate
the redundancy measure and detect the complementary in-
teraction between features, which can be achieved by using
KDE.

5.3 Computation Cost

The computation costs of KDE and counting approach are
shown in Table 5. As can be seen from the table, KDE is
more expensive than the counting approach. The reason is
that in order to calculate the mutual information, KDE needs
to calculate the distance from each instance to all other in-
stances to find out the number of neighbours of an instance,
which is about N times slower than the counting approach
(N is the total number of available instances).

6 Conclusions and Future Work

Although mutual information has been widely applied to
feature selection, it is limited to discrete datasets, which
requires discretising continuous datasets. Mutual informa-
tion estimation has been developed to allow mutual infor-
mation to directly work on continuous datasets without any
pre-processing step. The goal of this paper is to compare
between estimation and counting approach in cooperation
with PSO to achieve feature selection. The experimental re-
sults show that mutual information estimation is able to cap-
ture the interaction between features to evolve optimal fea-
ture subsets. In addition, mutual information estimation also
works well in both continuous and discrete versions of datasets.
Meanwhile the counting approach provides good accuracy
only in the discrete datasets and it is fail to measure the re-
dundancy between features.

However, in terms of efficiency, mutual information es-
timation is still slower than the counting approach. In or-
der to improve mutual information estimation’s efficiency, it
is important to develop instance selection algorithms along
with feature selection algorithms, which is left for our future
work.

References

Alfonso L, Lobbrecht A, Price R (2010) Optimization of
water level monitoring network in polder systems using
information theory. Water Resources Research 46(12)

Asuncion A, Newman D (2007) Uci machine learning
repository

Bharti KK, Singh PK (2016) Opposition chaotic fitness mu-
tation based adaptive inertia weight bpso for feature selec-
tion in text clustering. Applied Soft Computing 43:20–34

Boubezoul A, Paris S (2012) Application of global opti-
mization methods to model and feature selection. Pattern
Recognition 45(10):3676–3686

Cervante L, Xue B, Zhang M, Shang L (2012) Binary par-
ticle swarm optimisation for feature selection: A filter
based approach. In: Evolutionary Computation (CEC),
2012 IEEE Congress on, IEEE

14 Hoai Bach Nguyen et al.

Chuang LY, Chang HW, Tu CJ, Yang CH (2008) Improved
binary pso for feature selection using gene expression
data. Computational Biology and Chemistry 32(1):29–38

Dash M, Liu H (1997) Feature selection for classification.
Intelligent data analysis 1(3):131–156

Dash M, Liu H, Motoda H (2000) Consistency based fea-
ture selection. In: Knowledge Discovery and Data Min-
ing. Current Issues and New Applications, Springer, pp
98–109

Duda RO, Hart PE, Stork DG (2012) Pattern classification.
John Wiley & Sons

Eberhart RC, Shi Y (1998) Comparison between genetic al-
gorithms and particle swarm optimization. In: Evolution-
ary Programming VII, Springer, pp 611–616

Freeman C, Kulić D, Basir O (2015) An evaluation of
classifier-specific filter measure performance for feature
selection. Pattern Recognition 48(5):1812–1826

Ghamisi P, Benediktsson JA (2015) Feature selection based
on hybridization of genetic algorithm and particle swarm
optimization. Geoscience and Remote Sensing Letters,
IEEE 12(2):309–313

Hall M (2000) Correlation-based feature selection for dis-
crete and numeric class machine learning, proceedings of
7th intentional conference on machine learning, stanford
university

Huang CL, Wang CJ (2006) A ga-based feature selection
and parameters optimizationfor support vector machines.
Expert Systems with applications 31(2):231–240

Jaynes ET (1957) Information theory and statistical mechan-
ics. Physical review 106(4):620

Kennedy J, Eberhart R, et al (1995) Particle swarm opti-
mization. In: Proceedings of IEEE international confer-
ence on neural networks, Perth, Australia, vol 4, pp 1942–
1948

Kohavi R, John GH (1997) Wrappers for feature subset se-
lection. Artificial intelligence 97(1):273–324

Kononenko I (1995) On biases in estimating multi-valued
attributes. In: IJCAI, vol 95, pp 1034–1040

Kraskov A, Stögbauer H, Grassberger P (2004) Estimating
mutual information. Physical review E 69(6):066,138

Lane MC, Xue B, Liu I, Zhang M (2013) Particle swarm op-
timisation and statistical clustering for feature selection.
In: AI 2013: Advances in Artificial Intelligence, Springer,
pp 214–220

Lane MC, Xue B, Liu I, Zhang M (2014) Gaussian based
particle swarm optimisation and statistical clustering for
feature selection. In: Evolutionary Computation in Com-
binatorial Optimisation, Springer, pp 133–144

Lee S, Soak S, Oh S, Pedrycz W, Jeon M (2008) Modified
binary particle swarm optimization. Progress in Natural
Science 18(9):1161–1166

Lin SW, Ying KC, Chen SC, Lee ZJ (2008) Particle swarm
optimization for parameter determination and feature se-

lection of support vector machines. Expert systems with
applications 35(4):1817–1824

Lizier JT (2014) Jidt: An information-theoretic toolkit
for studying the dynamics of complex systems. arXiv
preprint arXiv:14083270

Lungarella M, Pegors T, Bulwinkle D, Sporns O (2005)
Methods for quantifying the informational structure of
sensory and motor data. Neuroinformatics 3(3):243–262

Marill T, Green DM (1963) On the effectiveness of receptors
in recognition systems. Information Theory, IEEE Trans-
actions on 9(1):11–17

Nguyen H, Xue B, Liu I, Zhang M (2014a) Filter based
backward elimination in wrapper based pso for feature
selection in classification. In: Evolutionary Computation
(CEC), 2014 IEEE Congress on, pp 3111–3118

Nguyen HB, Xue B, Liu I, Zhang M (2014b) Pso and sta-
tistical clustering for feature selection: A new representa-
tion. In: Simulated Evolution and Learning, Springer, pp
569–581

Nguyen HB, Xue B, Liu I, Andreae P, Zhang M (2015)
Gaussian transformation based representation in particle
swarm optimisation for feature selection. In: Applications
of Evolutionary Computation, Springer, pp 541–553

Nguyen HB, Xue B, Andreae P (2016) Mutual information
estimation for filter based feature selection using parti-
cle swarm optimization. In: Applications of Evolutionary
Computation, Springer, pp 719–736

Parzen E (1962) On estimation of a probability density func-
tion and mode. The annals of mathematical statistics pp
1065–1076

Peng H, Long F, Ding C (2005) Feature selection based
on mutual information criteria of max-dependency, max-
relevance, and min-redundancy. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on 27(8):1226–
1238

Pudil P, Novovičová J, Kittler J (1994) Floating search
methods in feature selection. Pattern recognition letters
15(11):1119–1125

Stearns SD (1976) On selecting features for pattern classi-
fiers. In: Proceedings of the 3rd International Conference
on Pattern Recognition (ICPR 1976), Coronado, CA, pp
71–75

Sturges HA (1926) The choice of a class interval. Journal of
the American Statistical Association 21(153):65–66

Tran B, Xue B, Zhang M (2014) Improved pso for fea-
ture selection on high-dimensional datasets. In: Simulated
Evolution and Learning, Springer, pp 503–515

Van Den Bergh F (2006) An analysis of particle swarm op-
timizers. PhD thesis, University of Pretoria

Vieira SM, Mendonça LF, Farinha GJ, Sousa JM (2013)
Modified binary pso for feature selection using svm ap-
plied to mortality prediction of septic patients. Applied
Soft Computing 13(8):3494–3504

Mutual Information for Feature Selection: Estimation or Counting? 15

Walters-Williams J, Li Y (2009) Estimation of mutual infor-
mation: A survey. In: Rough Sets and Knowledge Tech-
nology, Springer, pp 389–396

Whitney AW (1971) A direct method of nonparametric mea-
surement selection. Computers, IEEE Transactions on
100(9):1100–1103

Xue B, Cervante L, Shang L, Browne WN, Zhang M
(2012a) A multi-objective particle swarm optimisation for
filter-based feature selection in classification problems.
Connection Science 24(2-3):91–116

Xue B, Zhang M, Browne WN (2012b) New fitness func-
tions in binary particle swarm optimisation for feature se-
lection. In: Evolutionary Computation (CEC), 2012 IEEE
Congress on, IEEE, pp 1–8

Xue B, Zhang M, Browne WN (2013) Novel initialisation
and updating mechanisms in PSO for feature selection in
classification. Springer

Xue B, Zhang M, Browne WN (2014) Particle swarm opti-
misation for feature selection in classification: Novel ini-
tialisation and updating mechanisms. Applied Soft Com-
puting 18:261–276

Xue B, Zhang M, Browne W, Yao X (2015) A survey on
evolutionary computation approaches to feature selec-
tion. Evolutionary Computation, IEEE Transactions on
PP(99):1–1

Yang CS, Chuang LY, Ke CH, Yang CH (2008) Boolean bi-
nary particle swarm optimization for feature selection. In:
IEEE Congress on Evolutionary Computation (CEC), pp
2093–2098

