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Abstract In classification problems, a large number of fea-
tures are typically used to describe the problem’s instances.
However not all of these features are useful for classifica-
tion. Feature selection is an important preprocessing step to
overcome the problem of “curse of dimensionality”. Fea-
ture selection aims to choose a small number of features to
achieve similar or better classification performance than us-
ing all features. This paper presents a particle swarm Opti-
mization (PSO) based multi-objective feature selection ap-
proach to evolving a set of non-dominated feature subsets
which achieve high classification performance. The proposed
algorithm uses local search techniques to improve a Pareto
front and is compared with a pure multi-objective PSO algo-
rithm, three well known evolutionary multi-objective algo-
rithms and a current state-of-the-art PSO based multi-objective
feature selection approach. Their performances are exam-
ined on 12 benchmark datasets. The experimental results
show that in most cases, the proposed multi-objective algo-
rithm generates better Pareto fronts than all other methods.

Keywords Multi-objective · Feature selection · Classifica-
tion · Particle Swarm Optimization

1 Introduction

Classification is one of the most important tasks in machine
learning and aims to predict the class label of an instance
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based on the features and their values of the instances. In
the learning process, a set of instances, called the training
set, is used to train a classification algorithm, which is tested
on an unseen dataset, called the test set. In many problems,
a large number of features are used to well describe the
instances. Unfortunately, due to “the curse of dimension-
ality”(Gheyas and Smith, 2010), the larger the set of fea-
tures is, the longer time the training process takes. In addi-
tion, many features may contain irrelevant or redundant fea-
tures, which are not useful for classification. Those features
typically lower the quality of the whole feature set (Zhao
et al., 2009), because they can conceal or mask the use-
ful information from the relevant features. Feature selection
methods (Guyon and Elisseeff, 2003) are used to remove re-
dundant and irrelevant features, which will not only speed
up the learning/classification process but may also increase
the classification performance over using all features. How-
ever, due to the complex interaction between features and
the huge search space, it is hard to develop a good feature
selection approach.

The main goal of feature selection is to find a small fea-
ture subset from a large set of original features that achieves
at least as good classification performance as using all fea-
tures. In feature selection, if there are n original features,
then there are 2n possible subsets. When n is large, an ex-
haustive search is clearly too slow. Greedy algorithms such
as sequential forward selection (Whitney, 1971) and sequen-
tial backward selection (Marill and Green, 1963) are much
more efficient, but these methods easily get stuck at local op-
tima. Because of the ability of global search to overcome lo-
cal optima, evolutionary computation (EC) techniques, such
as genetic programming (GP) (Neshatian and Zhang, 2009a),
genetic algorithm (GAs) (Yuan et al., 1999) and particle
swarm optimization (PSO) (Unler and Murat, 2010; Yang
et al., 2008), have been applied to solve feature selection
problems. Compared with GA and GP, PSO is more prefer-
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able because it is simple and easy to implement. In addition,
PSO not only uses fewer parameters but also converges more
quickly.

Feature selection can be viewed as a multi-objective prob-
lem because it needs to simultaneously maximize the clas-
sification accuracy and minimize the dimensionality of the
selected subset. However, with fewer features being used for
classification, the classification accuracy is likely to be de-
creased. Those two objectives often conflict with each other
and the search process needs to consider the trade-off be-
tween them. This paper will take the advantages of PSO to
develop a multi-objective feature selection approach which
can simultaneously achieve both objectives of feature selec-
tion problems.

1.1 Goals

The overall goal of this study is to develop a PSO based
multi-objective feature selection approach, which can pro-
duce a set of non-dominated solutions that specify a small
number of features and achieve better classification perfor-
mance than using all features. To achieve this goal, we de-
velop a new multi-objective PSO (MOPSO) algorithm, called
ISRPSO, which uses local search techniques to improve the
Pareto front. In addition, the proposed algorithm is also com-
pared with three well known evolutionary multi-objective
algorithms including Non dominated sorting genetic algo-
rithm II (NSGAII) (Deb et al., 2000), Strength Pareto evolu-
tionary algorithm 2 (SPEA2) (Zitzler et al., 2001) and Pareto
archived evolutionary strategy (PAES) (Knowles and Corne,
1999). Finally the proposed algorithm will then be com-
pared with a state-of-the-art multi-objective PSO algorithm,
named CMDPSOFS (Xue et al., 2013). Specifically, we will
investigate the following:

– whether the proposed multi-objective PSO algorithm (IS-
RPSO) evolve a set of non-dominated solutions with a
small number of features and better classification per-
formance than using all features.

– whether applying local search can evolve better Pareto
front in comparison with a pure multi-objectives PSO.

– whether ISRPSO can evolve a better Pareto front than
NSGAII (Deb et al., 2000), SPEA2 (Zitzler et al., 2001)
and PAES (Knowles and Corne, 1999) in feature selec-
tion problem.

– whether ISRPSO is able to produce a Pareto front of
non-dominated solutions, which can outperform a state
of the art multi-objective PSO for feature selection, CMDP-
SOFS (Xue et al., 2013).

1.2 Organization

The remainder of this paper is organized as follows. Sec-
tion provides background information. In section 3, we pro-
pose a novel PSO-based multi-objective feature selection al-
gorithm. Section 4 describes the experimental design, and
section 5 presents the experimental results. In section 6, we
conclude our work with some possible extensions for future
work.

2 Background

2.1 Particle Swarm Optimization (PSO)

In 1995, Kennedy et al. (1995) proposed an evolutionary
computation algorithm called Particle Swarm Optimization
(PSO), which was developed based on social behaviours.
Like other swarm intelligence algorithms, PSO maintained a
set of particles, which was also known as a swarm. Each par-
ticle, which represented a candidate solution, moved around
the search space by using its own position and velocity. Par-
ticularly, the ith particle’s position was a D-dimensional vec-
tor, xi = (xi1, xi2, . . . , xiD), where D was the dimensional-
ity of the search space. For each iteration, the positions were
updated according to the particle’s velocity, which was also
represented by a vector, vi = (vi1, vi2, . . . , viD). In order
to avoid skipping good positions due to moving too fast, the
particle’s velocity was limited by a predefined maximum ve-
locity vmax, which meaned −vmax ≤ vid ≤ vmax. In PSO,
each particle also recorded the best position discovered by
itself, called pbest. In addition, the best position discovered
by a particle’s neighbours and itself was also maintained,
which was called gbest. According to the two pbest and
gbest, the ith particle moved around the search space by
the following updating equations:

vt+1
id = w∗vtid+c1∗ri1∗(pid−xtid)+c2∗ri2∗(pgd−xtid) (1)

xt+1
id = xtid + vt+1

id (2)

where t represents the tth iteration, d denotes the dth dimen-
sion in the search space, w is a predefined constant inertia
weight, c1 and c2 are acceleration constants, ri1 and ri2 are
two random values uniformly generated in the interval [0,1],
and pid and pgd represent the position entry of pbest and
gbest in the dth dimension, respectively.

The above description explains how a continuous PSO
works. There is still another kind of PSO, called binary PSO
(BPSO). In BPSO, the position entries are binary values.
There are some potential limitations of the current binary
PSO; for example, the update of particle position is based
only on the current velocity while in standard PSO, both
current velocity and position are used. Although both ver-
sions of PSO have been successfully used to solve feature
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selection problems (Unler and Murat, 2010; Liu et al., 2011;
Chuang et al., 2008; Huang and Dun, 2008), continuous
PSO achieves better performance than binary PSO as shown
by Xue (Xue et al., 2012a). Therefore, we will develop a
multi-objective feature selection approach using continuous
PSO.

2.2 Multi-Objective Optimization

2.2.1 Basic Concepts of Muti-Objective Optimization

In many Optimization problems, there is more than one ob-
jective that needs to be optimized. Often, the objectives con-
flict. Multi-objective problems refer to the presence of two
or more conflicting objectives. For example, a feature selec-
tion problem is a multi-objective problem, in which mini-
mizing both classification error rate and the number of se-
lected features are two conflicting objectives. The conflict-
ing objectives can be expressed in multiple conflicting ob-
jective functions, which needs to be maximized or mini-
mized. In mathematical terms, a multi-objective problem can
be expressed as in the following formula (as minimization
problems):

minimize(f1(x), f2(x), . . . , fk(x)) (3)

where x is the vector of variables which describe the prob-
lem’s solutions, fi(x) is an objective function of x and the
integer k ≥ 2 is the number of objectives.

In multi-objective problems, the trade off between con-
flicting objectives is used to measure the quality of a solu-
tion. In particular, suppose that y and z are two solutions of a
k-objective minimization problems. The solution y is better
than z or y dominates z if and only if:

∀i : fi(y) ≤ fi(z) and ∃j : fj(y) < fj(z) (4)

where i, j ∈ 1, 2, 3, . . . , k. When a solution is not domi-
nated by any other solutions, it is called a non-dominated
solution. The set of a non-dominated solution forms a trade-
off surface in the objective space, namely Pareto front. A
multi-objective algorithm is designed to evolve a set of non-
dominated solutions.

2.2.2 Evolutionary Multi-objective Algorithms

NAGAII, proposed by Deb et al. (2000), is one of the most
popular evolutionary multi-objective algorithms. There are
two main ideas introduced in NSGAII: a fast non-dominated
sorting technique and a diversity preserving algorithm. The
fast nondominated sorting technique is an efficient approach
to sorting all parents and offspring into different level of
non-dominated solutions. This sorted population is used to

build the parent population for the next generation. The den-
sity preserving algorithm estimates the density of solutions
based on the crowding distance and uses the estimates to
maintain the diversity of the population.

SPEA2 is another popular evolutionary multi-objective
algorithm proposed by Zitzler et al. (2001). The most im-
portant principle introduced in SPEA2 is the incorporation
between the fine-grained fitness assignment strategy, a den-
sity estimation technique and an enhanced archive trunca-
tion method. In particular, each individual’s fitness is the
sum of its strength raw fitness and a density estimation. A
new population is constructed by selecting non-dominated
solutions from both the original solution and the archive. If
the number of non-dominated solutions exceeds the popula-
tion size, the archive truncation method is applied to deter-
mine which solutions will be selected. The truncation method
bases on the distance between a solution and its kth nearest
neighbour.

PAES is an evolutionary multi-objective algorithm pro-
posed by Knowles and Corne (1999). The author argued that
PAES is the simplest possible non-trivial algorithm, which is
able to generate diverse solutions in the Paretor optimal set.
The main idea of PAES is the combination of local search
and the usage of an archive of previously found non domi-
nated solutions to identify the approximate dominance rank
of the current and candidate solutions.

The success of the Particle Swarm Optimization (PSO)
algorithm for a single-objective problem has encouraged re-
searchers to extend PSO to solve multi-objective problems
(MOPSO). As explained in the previous section, in PSO for
a single objective problem, each particle has exactly one
leader gbest to update its position. However, in most of cur-
rent MOPSO algorithms, instead of recording gbest for each
particle, an archive set is used to maintain a set of non-
dominated solutions being discovered by the population. Each
particle will select a solution from the archive set as its gbest
to update its position. When the final iteration is reached,
the archive set represents the final result of the MOPSO al-
gorithm, which forms the Pareto front. This work will ap-
ply a local search on the archive set to help MOPSO better
explore Pareto front. Since these algorithms were success-
fully applied to solve feature selection problems, all these
above algorithms will be used as benchmark techniques for
the proposed algorithm, which is specifically designed for
feature selection.

2.3 Related Work on Feature Selection

2.3.1 Traditional Feature Selection Methods

A basic version of feature selection is feature ranking (Dash
and Liu, 1997), where a score is assigned to each feature ac-
cording to an evaluation criterion. Feature selection can be
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performed by selecting the features with the highest scores.
However, this type of algorithm ignores the interaction be-
tween features. Additionally, the features with the highest
scores are usually similar. Therefore, these algorithms tend
to selecting redundant features.

Sequential search techniques were also applied to solve
feature selection problems. In particular, sequential forward
selection (SFS) (Whitney, 1971) and sequential backward
selection (SBS) (Marill and Green, 1963) were proposed. At
each step of selection process, SFS (or SBS) added (or re-
moves) a feature from an empty (full) feature set. Although
these local search techniques achieved better performance
than the feature ranking method, they might suffer the “nest-
ing” problem, in which a feature was permanently added or
removed from the selected feature set. In order to avoid the
nesting effect, Stearns Stearns (1976) proposed a “plus-l-
takeaway-r” method in which SFS was applied l times for-
ward and then SBS was applied for r back tracking steps.
However, it was challenge to determine the best values of
(l,r). This problem was addressed by sequential backward
floating selection (SBFS) and sequential forward floating se-
lection (SFFS), proposed by Pudil et al. (1994). In SBFS and
SFFS, the values (l, r) were dynamically determined rather
than being fixed in the “plus-l-takeaway-r” method.

2.3.2 EC Approaches(Non-PSO) for Feature Selection

EC techniques are well known because of their global search
ability. EC algorithms have been applied to feature selec-
tion problems, such as GAs (Zhu et al., 2007), GP (Nesha-
tian and Zhang, 2009b). Zhu et al. (2007) proposed a hy-
brid feature selection approach, which combined both lo-
cal search and GAs. In this algorithm, a filter method was
used to rank features individually. Basing on the ranking in-
formation, GAs deleted or added a feature to achieve better
fitness value, which was the classification accuracy. The ex-
periments showed that this algorithm outperformed the GAs
alone and other algorithms.

Oreski and Oreski (2014) proposed a hybrid genetic al-
gorithm with neural-networks (HGA-NN) to evolve an opti-
mum feature subset. In the initialization step, the feature set
was narrowed by different fast filter techniques. So impor-
tant features, which were selected by the filter approaches,
were used to initialise the major part of population. The rest
of population was filled randomly. In HGA-NN, an incre-
mental stage was applied to enhance the creation of the ini-
tial population, which increased the diversity of the genetic
material. The proposed algorithm was evaluated on two real-
world credit datasets. The experimental results showed that
HGA-NN achieved better classification performance than
GA-NN technique proposed by Wang (2005).

Lin et al. (2014) proposed a novel GA-based feature se-
lection approach, in which the prior knowledge about fi-

nancial distress prediction was used to group similar fea-
tures. After that a filter approach was used to rank all fea-
tures in the same group and only top-rank features from
each group were chosen to participate in the selection pro-
cess by GAs algorithm. Although the two-step selection ap-
proach was efficient, it skipped the interaction between fea-
tures. Other GA-based feature selection approaches were
developed recently to solve real-world problems, such as
Chaaraoui and Flórez-Revuelta (2013); Seo et al. (2014);
Liang et al. (2015).

Neshatian and Zhang (2009b) proposed a wrapper GP-
based approach, which evaluated and ranked feature sub-
set in binary classification tasks. Experiments showed that
the proposed methods detected subset of relevant features
in different situations, where other methods had difficulties.
Bhowan and McCloskey (2015) proposed two GP-based ap-
proaches to evolve a set of features, which was used directly
in the Watson system, an intelligent open-domain question
answering system. The first approach extracted all features,
which were used in the best-of-run evolved GP tree. The sec-
ond approach considers all evolved trees. Particularly, from
the set of GP trees, the top N features with the most fre-
quency were chosen as extracting features. Two values of N
being used in this paper was 10 and 20. The experiment re-
sults showed that, the set of features selecting from the best
GP tree only worked well when the number of selected fea-
tures was small. Meanwhile, selecting top N features from
the whole set of trees produces good resulted on both small
and large datasets. However, as other ranking features se-
lection algorithms, this algorithm did not consider the inter-
action between features, especially between redundant fea-
tures.

2.3.3 PSO-based Feature Selection Methods

Many EC algorithms have been used for feature selection,
such as GAs, GP or PSO. PSO is preferable because it is eas-
ier to implement and uses fewer parameters than GAs and
GP. Wang et al. (2007) proposed a filter PSO-based feature
selection algorithm, which applied rough set theory to eval-
uate feature subset. In the proposed algorithm, the fitness
function was the combination of the classification quality
of the feature subset calculated by rough set theory and the
proportion of the selected features. The experimental results
showed that the proposed algorithm could find the optimal
solution in a smaller amount of time than a GA using rough
sets. Chakraborty and Chakraborty (2013) proposed a fil-
ter PSO-based feature selection approach, which used fuzzy
set to calculate the fitness value for each particle. Specifi-
cally, the membership value of fuzzy set theory was used
with more than one thresh holds to decide whether or not an
instance is consistent according the selected features. The
proportion of consistent instances over the total number of
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instances was the consistent or fitness measure of the current
feature subset. Two PSO based filter feature selection algo-
rithms were proposed in (Cervante et al., 2012), where mu-
tual information and entropy were used in the fitness func-
tion to evaluate the relevance and redundancy of the selected
feature subset. The experiments showed that the proposed
methods significantly reduced the number of features whilst
achieved similar or better classification than using all fea-
tures.

In PSO, premature convergence was a common prob-
lem, in which the swarm converged quickly to a local op-
tima. To avoid premature convergence, Chuang et al. (2008)
proposed a new gbest updating mechanism, which reseted
gbest elements to zero if it maintained the same value after
several iterations. However, the performance of this algo-
rithm was not compared with other PSO based algorithms.
Later, Tran et al. (2014) also applied this resetting mecha-
nism cooperating with local searches on pbest to simultane-
ously reduced the number of selected features and improved
the classification performance. In addition, the new fitness
calculation was proposed, which based on the changed fea-
tures (selected to not selected or vice-versa). The proposed
algorithm achieved smaller feature subset with lower clas-
sification error than (Chuang et al., 2008). Another binary
PSO based algorithm, which also aimed to avoid premature
convergence, was proposed by Bin et al. (2012). At each
iteration of this algorithm, the swarm was divided into two
groups, named “leaders” and “followers”. The “leaders” had
better fitness values. The “followers” updated their positions
and velocities based on leaders’ update. The experimental
results showed that the proposed update strategy better uti-
lizes the social behaviour phenomenon than the standard bi-
nary PSO.

Xue et al. (2014) proposed three new initialization mech-
anisms, which mimic the sequential feature selection ap-
proach. While the small initialization used about 10% of
original features to initialize the particles, particles in the
large initialization were constructed based on 50% of origi-
nal features. These two initialization mechanisms were com-
bined in the mixed initialization, which used the small ini-
tialization for most of particles and the large initialization
for the rest. In addition, three new updating mechanisms for
pbest and gbest were proposed in the paper. The experimen-
tal results showed that the new initialization and updating
mechanisms led to smaller feature subsets with better clas-
sification performance than the standard PSO and two-stage
binary PSO algorithm.

Vieira et al. (2013) proposed a new representation for
binary PSO, which simultaneously performed feature selec-
tion and optimised the SVM kernel parameters. Particularly,
each bit string corresponded to an original feature or a ker-
nel parameter, which resulted in the length of the new repre-
sentation was equal to the total number of features and ker-

nel parameters. Experimental results showed that the pro-
posed algorithm achieved better classification performance
than other binary PSO-based feature selection algorithms
(Chuang et al., 2008; Lee et al., 2008) and selected smaller
feature subsets than GA-based feature selection algorithm
(Huang and Wang, 2006). This representation was also ap-
plied to continuous encoding (Lin et al., 2008) and a mixture
of binary and continuous encoding (Boubezoul and Paris,
2012). Lane et al. (2013) applied statistical clustering, which
groups similar features into one cluster. In particular, the
proposed method arranged the features in the same clus-
ter together and selected a single feature from each cluster
based on the velocity. Lane et al. (2014) further improved
his work by applying Gaussian distribution to select multi-
ple features from each cluster. Later, Nguyen et al. (2014)
also applied statistical clustering to proposed a new rep-
resentation, in which each bit string belonged to a certain
feature cluster and presented a feature index from the clus-
ter. However, in the new representation a small change of
the position might not lead to any different feature subset.
Therefore, Nguyen et al. (2015) applied Gaussian distribu-
tion to propose a new transformation rule, which could form
a smoother fitness landscape than the representation in (Nguyen
et al., 2014). An extensive review about EC-based feature
selection algorithms was conducted in (Xue et al.).

Feature selection problem can be seen as a multi-objective
problem, because its two objective usually conflict with each
other. However most of wrapper feature selection approaches
used only classification performance as the fitness function
(Mohemmed et al., 2009; Zhang et al., 2015) or combined
the classification accuracy and the number of selected fea-
tures into a single fitness function (Xue et al., 2012b; Huang
and Dun, 2008). Xue et al. (2012a) proposed two multi-
objective PSO algorithms for feature selection problems. The
first algorithm applied the idea of non-dominated sorting
based multi objective genetic algorithm II (NSGAII) into
PSO for feature selection. The other algorithm based on the
idea of crowding, mutation and dominance (CMDPSOFS)
to evolve the Pareto front solutions. According to the exper-
imental results, both algorithms could select a small number
of features while achieving better classification performance
than using all features. However, the above algorithms did
not propose any specific design for feature selection prob-
lems. Therefore , this work will propose a new local search
technique for MOPSO, which is specifically designed for
feature selection problems. The proposed algorithm is then
compared with the current state of art multi-objective PSO
based algorithm, CMDPSOFS.
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3 PSO-Based Multi-Objective Feature Selection
Algorithm: ISRPSO

In this section, we investigate a new approach to feature se-
lection using multi-objective PSO, with two objectives to
explore the Pareto front of feature subsets. Initially, stan-
dard PSO was proposed to solve single objective problems,
in which each particle remembers the best position discov-
ered by its neighbours and itself so far, called gbest. In order
to develop a multi-objectives PSO algorithm, Li (2003) in-
troduces the idea of an archive set, which is used in NSGA.
The archive set contains all non-dominated solutions which
have been discovered by the swarm so far. With the archive
set, instead of using the individual gbest to update velocity,
each particle selects an archive member as its gbest. There-
fore, the whole archive set is guides the swarm through the
search space. It is expected that the better archive sets would
allow the swarm to construct better solutions, which select a
small number of features and maintain or even improve the
classification accuracy. In this paper, we investigate a novel
PSO-based multi-objective feature selection algorithm (IS-
RPSO), which uses local search techniques to improve the
archive set with a better Pareto front.

3.1 Representation and fitness function for ISRPSO

In this study, a continuous PSO is used to solve feature se-
lection problems. Each particle’s position representation is
a vector of n real numbers, where n is the total number of
features. Each position entry xi corresponds to the ith fea-
ture in the original feature set. The value xi varies between
0 and 1 and represents the confidence that feature ith should
be included in the solution subset. A threshold θ is used to
decide whether or not a feature is selected: the ith feature is
selected if and only if θ < xi.

As stated above, each feature selection problem has two
objectives: minimising the classification error rate and min-
imising the number of selected features. These objectives
are calculated according to Equations 5 and 6, respectively.
Notice that both ErrorRate and FeatureRate varies in
the interval [0,1], which guarantees the fairness between 2
objectives.

ErrorRate =
FP + FN

TP + TN + FP + FN
(5)

where TP, TN, FP and FN are true positives, true negatives,
false positives and false negatives, respectively.

FeatureRate =
#Selected features

#All features
(6)

3.2 Important set concepts from the archive set

Before describing the novel multi-objectives PSO, it is help-
ful to clearly define some concepts about feature sets being
built from the archive set. As mentioned above, the archive
set contains all non-dominated solutions, which are not dom-
inated by any other solutions discovered so far. Therefore,
the features being selected by these archive members can be
considered the important features. These features are con-
tained in one feature set, denoted as S.

Another important concept relates to each individual of
the archive set. In particular, a set Si consists of all features
which are selected by the ith archive member. Similarly, a
set USi consists of all features, which selected by all archive
members except the ith particle. It can be seen that S =

Si

⋃
USi or USi = S \ Si.

Let consider an example. Assume the original feature set
contains 5 features, F = {f1, f2, f3, f4, f5}. The archive set
contains three membersArchive = {A1, A2, A3}, in which
the features selected by each feature are defined as below:

– 1th member (A1): S1 = {f1, f2}
– 2nd member (A2): S2 = {f1, f3}
– 3rd member (A3): S3 = {f2, f3, f4}

So feature f5 is not selected by any archive members, which
might indicate that f5 is an irrelevant or a redundant feature.
According to the above definition, the set of all features be-
ing selected by this archive set is S = {f1, f2, f3, f4}. For
each archive member, the set USi is defined as below

– US1 = S \ S1 = {f3, f4}
– US2 = S \ S2 = {f2, f4}
– US3 = S \ S3 = {f1}

3.3 Local Searche to Improve the Archive Set

As stated above, this work investigates using local search
techniques to improve the quality of the archive members,
which hopefully results in a better Pareto front. In partic-
ular, three operations, including Inserting (I), Swapping(S),
Removing (R) are proposed to enhance the archive set. All
of these operators use three sets S, Si, USi to search around
each archive member to find better solutions. These opera-
tions are described in the following sections.

3.3.1 Inserting

As mentioned above, for the ith archive member, the setUSi

contains all features that are selected by all archive members
except the ith members. Since the features being selected by
archive members are usually important, it would be possible
to improve the classification accuracy of an archive member
by adding one feature from the set USi to the current set of
selected features Si.
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The features in each setUSi are sorted according to their
single classification accuracy, which is the classification per-
formance when only feature ith is used to perform classifi-
cation. The better features, which have higher accuracy are
in front of the list. After that, each feature in USi is tem-
porarily added into Si to form a new feature set, called S′

i.
If the accuracy of S′

i is better than the accuracy of Si, the in-
serting process stops. The new solution, called SOin, whose
selected features are S′

i, is built and passed as an input to the
next step (Removing). So after the inserting step, the new
solution SOin will select at most one feature more than the
original archive member, Ai.

Continuing the example from the above section, in which
the first archive member A1 selects S1 = {f1, f2} and its
US1 = {f3, f4}. Suppose that C({f1, f2, f3}) = 0.75,
C({f1, f2, f4}) = 0.82, C({f1, f2}) = 0.80, where C(.) is
the classification of a feature set. Also suppose that the sin-
gle classification accuracy of f3 is better than f4. The insert-
ing process will start with f3. At the first step, the “inserting”
process will temporarily add feature f3 to set S1, to form
a new set {f1, f2, f3}. However, since C({f1, f2, f3}) <
C({f1, f2}), feature f3 will be discarded. After that feature
f4 is temporarily added to the set S1 to form a new fea-
ture set, {f1, f2, f4}. This time, since C({f1, f2, f4}) >

C({f1, f2}), a new solution SOin is created, which uses
{f1, f2, f4} as its selected features. This solution will be fur-
ther improved by Removing operation, which will be dis-
cussed in the next section.

3.3.2 Removing

In the Inserting step, at most one feature might be added
to the feature selected set of an archive member to form a
new solution SOin, which is guaranteed to be similar or bet-
ter than the archive member in term of classification accu-
racy. In contrast, Removing step tries to improve SOin by
removing at most one feature from SOin. The Removing
process works in the same way as backward selection algo-
rithm. Firstly, all features selected by SOin are sorted ac-
cording to their single classification accuracy. In the sorted
list, the features with less accuracy will be at the top of the
list, therefore they are more likely to be removed. After that,
each feature from the sorted list will be temporarily removed
from the selected set until there is an improvement in terms
of the classification accuracy. The new solution, called SOre

is built and passed as an input to the next step (Swapping).
So after the removing step, the new solution SOre will con-
tain at most one feature less than the solution SOin, pro-
vided by the Inserting step.

Continuing the example from the above section, the In-
serting process provides SOin = {f1, f2, f4} as an input
to the Removing process. Suppose that C(f2) < C(f1) <

C(f4). After sorting features according to their classifica-

tion accuracy, the order of removing features is f2 → f1 →
f4. Suppose that C({f1, f4}) = 0.80, C({f2, f4}) = 0.85,
and C({f1, f2}) = 0.75. Firstly, f2 is temporarily removed
from SOin, which results in a feature set {f1, f4}. How-
ever, since C({f1, f4}) = 0.80 < C({f1, f2, f4}) = 0.82,
feature f2 restored. Next feature f1 is temporarily removed
from SOin, which produces another feature set,{f2, f4}. This
time, as C({f2, f4}) = 0.85 > C({f1, f2, f4}) = 0.82, a
new solution SOre is created, which uses {f2, f4} as its se-
lected features. This solution will be improved in the last
operation called Swapping, which will be discussed in the
following section.

3.3.3 Swapping

Compared with Inserting and Removing operations, Swap-
ping is a bit more complicated. For each solution, this oper-
ation acts on both the selected set Si and unselected set USi.
In addition, instead of adding or removing features from the
solution, this operation tries to find out better solutions by
swapping between features in Si and USi. In other word,
this operation will temporarily replace one feature from Si

by one feature from USi.
Firstly, all features in Si are sorted according to their sin-

gle classification accuracy in ascending order, so the worst
feature is more likely to be replaced. In contrast, all features
in USi are sorted in descending order, therefore the feature
with better single classification performance will have more
chance to be added. For each feature u in USi, this process
will try to replace with a feature in Si. Once feature u finds
a suitable feature s in Si, which means the classification ac-
curacy is improved when s is replaced by u, the replacing
process for u is stopped. After that the swapping process
will continue with the feature after feature u in USi.

Continuing the example from the above section to ex-
plain for this operation, {f2, f4}, the new solution SOre

is fed into Swapping process. Its selected and unselected
set are Sre = {f2, f4} and USre = {f1, f3}. Suppose that
C(f1) < C(f3) and C(f2) > C(f4), the above two sets are
sorted as following Sre = {f4, f2} and USre = {f3, f1}.
The Swapping operation starts with the first element of the
set USre, which is feature f3. Firstly, f3 will try to swap
with the worst feature in the set Sre, which is feature f4.
Suppose that C({f3, f2}) > C({f4, f2}), then f3 imme-
diately replaces f4 to create a better solution SOs1 , which
selects the following feature {f3, f2}. Note that the selected
set is updated, which is Ss1 = {f3, f2}. The Swapping
processes will continue until all features in the unselected
set USre have been considered.

3.3.4 Overall ISRPSO Algorithm

Algorithm 1 shows the pseudo-code of ISRPSO. In order to
determine a leader, ISRPSO maintains a set of non-dominated
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Algorithm 1 : Pseudo-code of ISRPSO
1: begin
2: divide Dataset into a Training set and a Test set;
3: initialize the swarm;
4: evaluate two objectives values for each particle;
5: add non-dominated solutions into Archive set;
6: while Maximum iterations is not reached do
7: if iteration is divided by 5 then . improve the Archive set

for each 5 iterations
8: for each solution i in the Archive do
9: (SOin, Sin, USin) = Inserting(Ai, Si, USi)

10: (SOre, Sre, USre) =
Removing(SOin, Sin, USin)

11: (SOsw, Ssw, USsw) =
Swapping(SOre, Sre, USre)

12: if SOsw is not dominated by any archive members
then

13: insert SOsw into Archive set
14: end if
15: end for
16: end if
17: for each particle i in the swarm do
18: select a leader (gbest) from Archive set for each parti-

cle by using a binary tournament selection based on the objectives
distance;

19: update the velocity and the position of particle i;
20: evaluate two objective values for each particles;
21: update the pbest for each particle;
22: if the ith particle is not dominated by any archive members

then
23: insert ith particle into Archive set;
24: end if
25: end for
26: end while
27: calculate the testing classification error rate of the solutions in

Archive set on the test set;
28: return the solutions in Archive;
29: return the training and test classification error rates of the solutions

in Archive; end

solutions being discovered so far. A gbest for a particle is
selected from the Archive set according to their objective
distance and a binary tournament selection. Specifically, the
binary tournament selection is used to select two solutions
from the Archive set, and the closest solution (to the parti-
cle) in the objective space is chosen as the gbest. The maxi-
mum size of theArchive set is set as the number of particles
in the swarm.

The local search, which aims to improve the solutions
in Archive set, is performed every 5 iterations. Particularly,
three operations are used to improve the solution quality of
the Archive set. For each Archive member, the inserting
operation tries to add one more feature into the member’s
feature set to create a new solution, called SOin. If adding
one feature improves the classification accuracy of the cur-
rent Archive member, then SOin is built based on the new
feature set. Otherwise, SOin is exactly the same as the cur-
rent Archive member. After that, the solution SOin is fur-
ther improved by the removing operation. On the contrary,

removing operation tries to delete at most one feature from
SOin, which results in similar (no feature is deleted) or
higher classification accuracy. Once more, the output of re-
moving operation, SOre, is improved by the swapping op-
eration. Instead of removing or inserting features, this oper-
ation finds a better solution by swapping between features
selected by current solution (SOre) and features which are
selected by the other Archive members. So the swapping
operation might produce a new solution, SOsw, which has
the same number of selected features but achieves better ac-
curacy than SOre. A new position is built based on the fea-
ture set SOsw. In the new position, all position entries cor-
responding to features from SOsw are set to 1 and all other
entries are set to 0. Finally, if the new solution is not dom-
inated by any Archive member, it will be inserted into the
Archive set. In addition, all solutions, which are dominated
by the new solution, will be removed from the Archive set.

With these three operations, it is expected that at least the
final improved solution SOsw will not be dominated by any
Archive members. In a good case, SOsw might even dom-
inate some Archive members. Therefore this local search
technique either maintains the diversity of the swarm or even
improves the Pareto front by creating a better solution. Cur-
rently, since the classification accuracy is used to compare
between two solutions, it is quite expensive to perform this
local search. Therefore, the solutions within theArchive set
are improved by these three operations for every 5 iterations.

4 Design of Experiments

The proposed multi-objectives PSO based algorithm is ex-
amined and compared with a pure multi-objective PSO al-
gorithm (MOPSO), three well-known evolutionary multi-
objectives algorithms (NSGAII, SPEA2 and PAES) and a
state-of-the-art PSO-based multi-objectives feature selection
algorithm (CMDPSOFS). The comparison is performed on
twelve datasets shown in Table 1, which were selected from
the UCI machine learning repository (Asuncion and New-
man, 2007). These datasets have different numbers of fea-
tures, classes and instances. For each dataset, all instances
are randomly divided into a training set and a test set, which
contains 70% and 30% of the instances, respectively.

All the algorithms are wrapper approaches, which use
K-nearest neighbour (KNN) as their classification/learning
algorithms where K=5. In recent literature Xue et al. (2015),
the generality of wrapper feature selection approaches is dis-
cussed. The experiment results show that feature subsets,
which are selected by wrappers using simple classification
algorithms like KNN, can be general to other classification
algorithms. Therefore, in this work, only KNN is used as a
classification algorithm to select features and to test the per-
formance of selected feature subset. Another reason using
KNN instead of other classifier algorithms, like SVM and
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Dataset #Features #Classes #Instances
Wine 13 3 178
Australian 14 2 178
Vehicle 18 4 846
German 24 2 1000
Ionosphere 34 2 351
Lung Cancer 56 3 32
Sonar 60 2 208
Movementlibras 90 15 360
Hillvalley 100 2 606
Musk1 166 2 476
Madelon 500 2 4400
Isolet5 617 2 1559

Table 1: Datasets.

DT, is to make the evaluation process faster in this wrapper
approach. During the training process, each particle, which
represents a set of selected features, is evaluated by using
10-fold cross-validation. After the training process, the se-
lected features are evaluated on the test set to obtain the
testing classification error rate. For each dataset, all of the
algorithms have been conducted for 50 independent runs.

In all of the PSO-based algorithms, the fully connected
topology is used. The parameters are set as follows (Van
Den Bergh, 2006):w = 0.7298, c1 = c2 = 1.49618, vmax =

6.0. The population size is 30 and the maximum number of
iterations is 100. The threshold θ is set as 0.6.

In NSGAII (Deb et al., 2000), SPEA2 (Zitzler et al.,
2001) and PAES (Knowles and Corne, 1999), the represen-
tation of each individual is the same as the GA-based feature
selection algorithms (Chakraborty, 2002; Hamdani et al.,
2007), where each individual is a n-bit binary string and n
is the number of available features. Each bit in the represen-
tation corresponds to a feature in the original feature set. If
a bit value is “1” then the corresponding feature is selected.
Otherwise the bit with value “0” indicates that the corre-
sponding feature is not selected. In these algorithms, a bit-
flip mutation operator is applied and a single point crossover
operator is used in NSGAII and SPEA2. The mutation rate
is 1

n , where n is the number of features in the original set
and the crossover rate is 0.9. In these algorithms, the num-
ber of individuals is 30 and the number of generations is
100. Therefore, the total number of evaluations is 3000.

5 Results and Discussion

For each dataset, five multi-objectives algorithms, ISRPSO,
CMDPSOFS, NSGAII, SPEA2, PAES and CMDPSOFS are
conducted for 50 independent runs. After each run, a set of
non-dominated solutions are obtained. In order to compare
these algorithms, firstly all 50 archive sets are combined to-
gether to create an union set. In this union set, the classi-
fication error rate of feature subsets, which share the same

number of features, are “averaged”. A set of “average” so-
lutions is obtained by using the average classification error
rate and the corresponding number of features. This aver-
age set is called the “average” Pareto front. The meaning
of average Pareto front is the estimation of classification er-
ror when the number of features is predefined. In addition,
for each dataset, all non-dominated solutions are selected
from the union set to create a set of “best” solutions, called
“best” set.

Firstly ISRPSO is compared with a pure multi-objective
PSO algorithm to illustrate how the local search can improve
the Pareto front. This comparison on the training and test
sets are shown in Figure 1 and 2 respectively. Meanwhile,
Figure 3 and 4 show the comparison between ISRPSO and
NSGAII, SPEA2, PAES on the training and test sets respec-
tively. Finally, ISRPSO is compared with the state of art
multi-objective PSO based feature selection, CMDPSOFS
(Xue et al., 2013). In particular, the classification error on
training set between ISRPSO and CMDPSOFS are shown
in the Figure 5, while Figure 6 indicates these algorithms’
classification performance on the test set. In these figures, “-
Ave” stands for the “average” Pareto front resulted from the
50 independent runs. “-Best” represents the non-dominated
solutions (“best” set) of all multi-objectives algorithms. In
each figure, the top line means the dataset name followed by
the total number of features and the classification error rate
achieved by using all features.

5.1 Comparison Between ISRPSO and Using All Features

According to Figure 2, in all cases, ISR-Ave includes three
or more feature subsets, which select a smaller number of
features and achieve a lower classification error rate than
using all features.

As can be seen in Figure 2, ISR-Best includes two or
more solutions, which select a small number of features while
still achieve lower classification error rate than using all fea-
tures. On all datasets, ISRPSO evolves at least one feature
set, which only selects less than 10% of the total number of
features but achieves better classification performance than
using all features. Specially, on Madelon dataset, despite
of selection only 5 out of 500 features, ISRPSO still can
achieve around 10.05% better than using all features.

The results suggest that ISRPSO with three operations
applied on the Archive set can effectively explore the Pareto
front, which can select a small number of features and achieve
better classification accuracy than using all features.
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Fig. 1: Comparison between IRPSO and MOPSO on the training set.
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Fig. 2: Comparison between ISRPSO and MOPSO on the test set.
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Fig. 3: Comparisons between NSGAII, SPEA2, PAES and ISRPSO on the training set.
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Fig. 4: Comparisons between NSGAII, SPEA2, PAES and ISRPSO on the test set.
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Fig. 5: Comparison between ISRPSO and CMDPSOFS on the training set.
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Fig. 6: Comparison between ISRPSO and CMDPSOFS on the test set.
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5.2 Comparison Between ISRPSO and a pure
multi-obejective PSO (MOPSO)

In order to test the effect of the local search applied in IS-
RPSO, ISRPSO is compared with a pure multi-objetive PSO
algorithm (MOPSO) for feature selection. The comparisons
on the training and the test set are shown in Figures 1 and 2
respectively.

As can be seen from two figures, on the first 6 datasets in
which the number of features is quite small, the Pareto fronts
evolved by these two algorithms are similar. It is clear that
on small datasets, MOPSO is able to effectively explore the
search space to produce an optimal or near optimal Pareto
front without any additional help. However, the big differ-
ences between these two algorithms occur on the other 6
datasets, which have larger number of features than the first
6 datasets. As can be seen from two Figures 1 and 2, in both
training and test set, ISRPSO outperforms MOPSO in terms
of the number of selected features as well as the classifi-
cation performance. For example, in the Hillvalley dataset,
even selecting the same number of features, ISRPSO alwasy
achieves 2-3% better classification accuracy than MOPSO.
Similarly, in the Musk1 dataset, ISRPSO only selects around
7 features to achieve the same performance as 20 features se-
lected by MOPSO. The biggest difference can be seen in the
Madelon dataset. ISRPSO selects only 10 features but still
achieves 5% better performance than 90 features selected by
MOSPO. Similarly, in the Isolet5 dataset, ISRPSO is able to
evolve at least 3 solutions with very low classification error,
which can not be achieved by MOPSO even when a large
number of features are selected.

The larger number of features, the more complicated the
search space. Therefore, in the datasets with a large num-
ber of features, MOPSO tends to stuck at local optima. In
these cases, applying local search techniques in MOPSO
will help the particle to exploit better solutions, which re-
sults in a better Pareto front. Specifically, three proposed op-
eratios try to improve the classification performance of each
archive member while maintain or even reduce the number
of selected features by using the set of promising features.
The idea is by improving the archive set, the whole swarm
will be guided to better positions. The experimental results
show that the proposed local search technique is helpful for
MOPSO to better explooit the Pareto front.

5.3 Comparison Between ISRPSO and NSGAII, SPEA2,
PAES

In order to test the performance of ISRPSO, it is compared
with three popular evolutionary multi-objective algorithms,
namely, NSGAII, SPEA2 and PAES. Comparisons between
ISRPSO, NSGAII, SPEA2 and PAES on training and test
set are shown in Figure 3 and 4 respectively.

According to Figure 3, on the training set, in most cases,
the average Pareto fronts evolved by ISRPSO are much bet-
ter than the other multi-objective algorithms. Similarly, IS-
RPSO’s best Pareto fronts provide better solutions than NS-
GAII, SPEA2 and PAES. Particularly, on the small datasets
(the first six datset in tables 1), the ISRPSO’s Pareto fronts
are quite similar to other algorithms’ Pareto front, except in
Vehicle dataset, ISRPSO’s accuracy is about 9% better than
other algorithms’ accuracy while they selects the same num-
ber of feaetures. On the other big dataset, ISRPSO’s Pareto
fronts are significantly better than NSGAII and SPEA2. With
the same number of selected features, ISRPSO’s accuracy
is about 2%-15% better than the best accuracy of NSGAII,
SPEA2 and PAES. Especially, on large dataset like Madelon
and Isolet5, ISRPSO is able to find out solutions with a very
small number of feature, which can not be found by either
NSGAII, SPEA2 or PAES. In addition, on Madelon dataset,
the worst solution of ISRPSO significantly dominates the
best solution of NSGA, SPEA2 and PAES algorithms.

As can be seen in Figure 4, in most cases, ISRPSO’s
pareto front is similar or better than other multi-objective
algorithms. Particularly, ISRPSO usually selects a smaller
number of features to achieve the same accuracy with NSGA,
SPEA or PAES. However, in the first nine small datasets,
sometimes ISRPSO sacrifices the classification accracy to
select a small number of features. For example, in Hillval-
ley dataset, ISRPSO can not find out the solution which
achieves higher classification performance than the best so-
lution of PAES. On the other datasets (big datasets), IS-
RPSO’s Pareto front is significantly better than the other
three algorithms. For example, in the Isolet5 dataset, the
lowest classification error achieved by ISRPSO is 0.88%
with 74 selected features. Meanwhile the lowest classifica-
tion achieved by NSAII is 1.2%, which requires more than
220. In addition, on the Madelon dataset, the lowest classifi-
cation accuracy, achieved by ISRPSO, is 80.5% with only 2
selected features. Meanwhile, 80.5% is also the best perfor-
mance that NSGAII can achieve but NSGAII needs to select
a large feature set, which contains more than 160 features.

The results in Figure 3 and 4 suggest that ISRPSO can
effectively improve the Pareto front. In most cases, ISRPSO
outperforms NSGAII, SPEA2 and PAES in both objectives.
However, on Hillvalley dataset, ISRPSO sacrifices the clas-
sification accuracy to achieve smaller number of features.
The reason is that the proposed algorithm lacks of explo-
ration ability. Since the local search operations aim to add or
remove at most one feature from the current feature set, the
operations can only find out the better subset which are close
to the current position but better performance than the cur-
rent feature set. Therefore, the positions, which correspond
to a much higher number of features than the current solu-
tion, are too far and hard to be discovered by the local search
operations. However, with the same number of selected fea-
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tures, the local search operations ensure that the better fea-
ture combiation will be discovered. Therefore, ISRPSO usu-
ally achieves better performance than other multi-objective
algorithms when the same number of features are selected.

5.4 Comparison Between ISRPSO and CMDPSOFS

Figure 5 indicates the performance of ISRPSO and CMDP-
SOFS on the training set. As can be seen from Figure 5,
on all datasets, ISRPSO selects a smaller number of fea-
tures and still achieve better classification performance than
CMDPSOFS. With the same number of selected features,
ISRPSO outperforms CMDPSOFS in terms of classifica-
tion accuracy. For example, in the Hillvalley, with 7 selected
features, ISRPSO’s performance is about 14% better than
CMDPSOFS’s classification accuracy. In most cases, the IS-
RPSO’s average Pareto front is even better than the best
Pareto front envolved by CMDPSOFS. In Madelon dataset,
despite of selecting only 5 features, ISRPSO still achieves
better performance than the performance of 100 features se-
lected by CMDPSOFS. In order to achieve same classifica-
tion accuracy as ISRPSO, CMDPSOFS usually needs to se-
lect much more feature than ISRPSO. For example in Move-
mentlibras dataset, CMDPSOFS selects from 2 to 8 times
more features than ISRPSO.

Figure 6 shows the differences between ISRPSO and
CMDPSOFS on the test set. In the first ten datasets, the av-
erage pareto fronts of ISRPSO and CMDPSOFS are simi-
lar in terms of classification accuracy but ISRPSO usually
selects smaller number of features than CMDPSOFS. Sim-
ilarly, on the first ten datasets, ISRPSO’s best pareto fronts
are almost identical to the best pareto fronts from CMDP-
SOFS. Although, in the best pareto fronts, ISRPSO still se-
lectes slightly smaller number of features than CMDPSOFS.
However, on some datasets like Sonar or German, ISRPSO
can not find out the solution which selects large number of
features but achieves low classification rate. Once more, IS-
RPSO sacrifies the classification accuracy to select a small
number of features. On the other big datasets, namely Made-
lon and Isolet5, ISRPSO outperforms CMDPSOFS in terms
of the number of selected features and the classification per-
formance. For example, in Madelon dataset, in order to achieve
19% classification error rate, ISRPSO selects only 5 fea-
tures while CMDPSOFS needs to select more than 40 fea-
tures.In Isolet5, with 63 selected features, ISRPSO’s clas-
sification error rate is 0.88% which is much smaller than
CMDPSOFS’s error rate (1.3%).

The results in Figures 5 and 6 shows that in most cases
ISRPSO evolves similar or better pareto front than CMDP-
SOFS. Specially, in the datasets with large number of fea-
tures, ISRPSO significantly outperforms CMDPSOFS in term
of classification accuracy and number of selected features.
This result illustrates that for a complicated search space

(high dimension) the proposed local search technique, which
is specifically designed for feature selection, provides a bet-
ter support than crossoever and mutation operators being
used in CMDPSOFS. Particularly, CMDPSOFS uses a gen-
eral mutation operator on the whole swarm to improve both
global and local search abilities of the algorithm. However,
the mutation operator in CMDPSOFS is not specifically de-
signed for feature selection problems. In our algorithm, the
local search technique uses the sequential forward/backward
idea to add/remove feature from the current feature set. In
addition, the local search technique also uses a good fea-
ture set (all features selected by the archive set) to improve
the current feature, which is likely to be faster and more
effective than using all features, like in CMDPSOFS. Fur-
ther more, our local search concentrates on improving the
quality of the archive set rather than the whole swarm like
CMDPSOFS. The reason is a good archive set is expected to
guide the whole swarm to discover better feature subsets and
evolve a more optimal Pareto front. However, the improve-
ment over CMDPSOFS made by ISRPSO on the training set
is much better than on the test set, which might be a result
of overfitting problem.

6 Conclusions and Future Work

The goal of this study was to develop a PSO based multi-
objective seature selection approach to evolving a set of non-
dominated feature subsets and achieving a high classifica-
tion performance. The algorithm ISRPSO was proposed to
simultaneously minimise the number of features and the clas-
sification error rate. In ISRPSO, three operations, namely in-
serting, removing and swapping are applied on each archive
member to better explore the Pareto front. The experiments
on 12 datasets show that ISRPSO successfully evolved a set
of non-dominated solutions, which reduce the number of
features and achieve better classification performance than
using all features. In comparison with a pure multi-objective
PSO (MOSPO), ISRPSO usually evolves better Pareto front
especially on the datasets with a large number of features,
which indicates that the proposed local search is usesful for
feature selection problems. Furthermore, the results show
that ISRPSO outperformed three well-known evolutionary
multi-objective algorithms (NSGAII, SPEA2, PAES) in terms
of both classification accuracy and the number of selected
features. Compared with CMDPSOFS, ISRPSO achieves sim-
ilar or better classification accuracy while selects smaller
number of features. Especially, for the data sets with a large
number of features, ISRPSO significantly outperformed all
other algorithms.

However, there are some potential limitations of ISRPSO.
Firstly, overfitting is one of ISRPSO’s problem. As can be
seen from the results, sometimes the significant improve-
ment made by ISRPSO on the training set does not lead to
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a significant improvement in the test set. Therefore, in the
future, we will further develop ISRPSO to improve its gen-
eralization. In addition, for some datasets, ISRPSO seems to
sacrifices the classification accuracy to select a small num-
ber of features. It is necessary to further balance between
these two objectives for ISRPSO, which is left for future
work. In addition, as can be seen from the experimental
results, both genetic operators such as crossover, mutation
and three local search operators helps MOSPO to better ex-
plore the Pareto fornt. Therefore, the combination between
these two ideas might even better support MOPSO, which
will be investigated in the future. Additionally, ISRPSO is
not tested with high-dimensional datasets mainly because of
the expensive computation cost of wrapper approaches. In
the future, it would be interesting to reduce the computa-
tion cost of ISRPSO so that it can be extended to deal with
high-dimensional datasets such as gene datasets. Although
the experimental results show that ISRPSO could evolve a
good Pareto front, the computation complexity of the algo-
rithm is not analysed in detail due to the variation in the
fitness evaluation process of feature selection problems. In-
vestigating the complexity of a feature selection algorithm
is still an open issue, which is left for future work.
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