
1

A Hybrid Evolutionary Computation Approach to
Inducing Transfer Classifiers for Domain Adaptation

Bach Hoai Nguyen, Member, IEEE, Bing Xue, Member, IEEE, Peter Andreae,
and Mengjie Zhang, Fellow, IEEE

Abstract—Domain adaptation utilizes learned knowledge from
an existing domain (source domain) to improve the classification
performance of another related, but not identical, domain (tar-
get domain). Most existing domain adaptation methods firstly
perform domain alignment, then apply standard classification
algorithms. Transfer classifier induction is an emerging domain
adaptation approach that incorporates the domain alignment
into the process of building an adaptive classifier instead of
using a standard classifier. Although transfer classifier induction
approaches have achieved promising performance, they are
mainly gradient-based approaches which can be trapped at local
optima. In this paper, we propose a transfer classifier induction
algorithm based on evolutionary computation to address the
above limitation. Specifically, a novel representation of the trans-
fer classifier is proposed which has much lower dimensionality
than the standard representation in existing transfer classifier
induction approaches. We also propose a hybrid process to
optimize two essential objectives in domain adaptation: the
manifold consistency and the domain difference. Particularly, the
manifold consistency is used in the main fitness function of the
evolutionary search to preserve the intrinsic manifold structure
of the data. The domain difference is reduced via a gradient-
based local search applied to the top individuals generated by
the evolutionary search. The experimental results show that the
proposed algorithm can achieve better performance than seven
state-of-the-art traditional domain adaptation algorithms and
four state-of-the-art deep domain adaptation algorithms.

Index Terms—Domain adaptation, transfer learning, classifi-
cation, evolutionary computation

I. INTRODUCTION

Classification — one of the most important tasks in machine
learning [1], [2], [3] — typically requires labeled data to
learn an effective classifier. In many real-world scenarios, it is
expensive to manually label instances from a new domain. A
possible solution is to train a classification algorithm using
labeled data from a related (source) domain. The obtained
classifier can be used to classify the unlabeled instances in
the new (target) domain. However, the two domains may
have different feature spaces and/or different data distributions.
Such differences cause a significantly degraded classification
performance on the target domain since most standard clas-
sification algorithms assume that the training and test sets
should be from the same domain. The situation promotes

This work was supported in part by the Marsden Fund of New Zealand
Government under Contracts VUW1509 and VUW1615, the Science for
Technological Innovation Challenge (SfTI) fund under grant E3603/2903,
and the University Research Fund at Victoria University of Wellington grant
number 216378/3764 and 223805/3986.

The authors are with the Evolutionary Computation Research Group,
Victoria University of Wellington, Wellington, New Zealand (e-mail:
Hoai.Bach.Nguyen@ecs.vuw.ac.nz).

the need for transfer learning [4] which aims to reduce the
domain differences. Domain adaptation [4] is a particular case
of transfer learning, where the two domains share the same
feature space. Domain adaptation focuses on reducing the data
distribution difference. Some techniques for domain adaptation
require labeled data in the target domain to guide the domain
adaptation process. A more difficult problem is unsupervised
domain adaptation where the target domain has no labels. This
paper address the unsupervised domain adaptation problem.

The two most common domain adaptation approaches are
instance-based and feature-based methods [4]. Instance-based
methods attempt to weight instances from both domains such
that the distribution difference is reduced. For example, TrAd-
aBoost [5] trains a classifier based on both labelled source
instances and a few labelled target instances. If any source
instance is wrongly classified by the learned classifier, the
source instance is considered to have a different distribution in
comparison with the target instances and its weight is reduced.
After a certain number of iterations, the source instances,
which form similar distributions to the target instances, will
have larger weights. Such source instances can be used to
improve the classification performance on the target domain.
Feature-based methods, on the other hand, attempt to learn a
feature transformation where the transformed source and target
data are more similar, which is also known as domain align-
ment [6], [7]. Both instance-based and feature-based methods
are two-step algorithms, where the first step is to reduce the
domain difference and the second step is to apply a standard
classification algorithm, such as k-nearest neighbors (KNN).
Such a mechanism does not guarantee that the standard
classification can cope well with the weighted or transformed
data. Recently, transfer classifier induction has been proposed
[8] to directly learn an adaptive classifier rather than using
a standard classification algorithm on the transformed data.
The adaptive classifier embeds the domain alignment into its
learning process. Since the transfer classifier induction method
takes the classifier into account during the domain alignment,
it can achieve superior performance compared to the instance-
based and feature-based approaches [8], [9]. Therefore, this
paper also aims to build an adaptive classifier for domain
adaptation.

Although transfer classifier induction approaches achieve
promising results, most of them are based on the use of
gradients, which makes it easier for them to be trapped in
local optima. Evolutionary computation (EC) is a family of
population-based optimization approaches that are well-known
because of their potential global search ability. In [10], we

2

proposed the first EC-based approach for transfer classifier
induction, called P-MEDA. In that algorithm, each candidate
solution (or population member) represents a classifier which
is essentially a matrix of continuous numbers. This representa-
tion has several limitations which lead to the restricted perfor-
mance of P-MEDA. Firstly, since the matrix scales according
to the total number of instances in both domains and the
number of class labels, it is a high-dimensional optimization
problem. Secondly, the matrix elements are unbounded, so
standard genetic operators, such as crossover and mutation,
are less effective. Although P-MEDA is a population-based
approach, the main step to evolve the candidate solution is
still gradient-based. The population members communicate
only when a candidate solution needs to be re-initialized.
The communication is also limited, mainly via an archive
set which records all the promising classifiers discovered so
far. Thirdly, each evaluation of P-MEDA requires computing
many matrix operations, which is computationally expensive,
especially when there is a large number of instances.

This work extends our previous work [10] to address the
three limitations. The contributions of this work are as follows:
• Firstly, we propose a new discrete representation which

has much lower dimensionality than the continuous rep-
resentation in existing transfer classifier induction algo-
rithms. The proposed representation can directly optimize
the class labels for target instances.

• Secondly, we propose a hybrid approach that combines
the evolutionary search and the gradient search. Note
that the proposed hybrid approach is significantly dif-
ferent from the hybrid approach in P-MEDA [10]. Al-
though P-MEDA uses some ideas from the evolutionary
search, it still relies mainly on the gradient search due
to its high-dimensional representation. In contrast, the
proposed algorithm uses the evolutionary search as the
main component to reduce the manifold inconsistency,
and the gradient search plays the role of a local search
to further refine the candidate solutions to reduce the
domain discrepancy. Such difference is because standard
EC genetic operators can be naturally applied to the
proposed discrete representation.

• Thirdly, we propose a more efficient fitness function
which uses fewer matrix operations in each evaluation
with an expectation of improving efficiency.

The proposed algorithm is validated by comparing it with
three well-known classification algorithms, seven state-of-the-
art traditional domain adaptation approaches, and four state-of-
the-art deep domain adaptation approaches. The comparison is
performed on 30 real-world domain adaptation cases.

The rest of the paper is organized as follows: Section II
provides a discussion about existing domain adaptation ap-
proaches, especially the transfer classifier induction category.
Section III introduces the proposed algorithm. Section IV
summarizes the experimental studies. The conclusions and
future work are discussed in Section V.

II. RELATED WORK

This section firstly introduces basic concepts in transfer
learning and domain adaptation. Next, a subsection is dedi-

TABLE I: Notations used in this paper.

Notation Description Notation Description
Ds, Dt source/target domain X data matrix
n,m # instances in Ds, Dt Y label matrix
C # classes L Laplacian matrix
α class parameters E domain indicator matrix
z candidate classifier M MMD matrix

cated to discussing transfer classifier induction which is the
focus of this paper. Notations that are frequently used in this
paper are summarized in Table I.

A. Transfer Learning and Domain Adaptation

An essential concept in transfer learning is the domain
which consists of two components: a feature space X and a
marginal distribution P (X). Two domains are different if they
have different feature spaces and/or marginal distributions.
Given a domain D(X , P (X)), a learning task is to find a
prediction function f(·) that maps from the feature space
X to a label space Y . In a classification task, f(·) can
be represented by a conditional distribution Q(Y|X). Two
tasks are different if they have different label spaces and/or
conditional distributions. Given a source domain Ds and its
learning task Ts, the goal of transfer learning is to utilize the
knowledge from the source domain to improve the learning
performance of the learning task Tt on a target domain Dt.
Domain adaptation is a specific case of transfer learning
with an assumption that the two domains have the same
feature space (Xs = Xt = X) and the two learning tasks
have the same label space (Ys = Yt = Y). Therefore,
domain adaptation aims to reduce the differences between the
two marginal distributions (Ps(X) 6= Pt(X)) and the two
conditional distributions (Qs(Y|X) 6= Qt(Y|X)). We focus
on handling domain adaptation, more specifically unsupervised
domain adaptation, where there is no labeled instances in the
target domain. The main task of this work can be formally
defined as follows:

Unsupervised domain adaptation: Given a labeled source
data with n instances, Ds = {xi, yi}ni=1, and an unlabeled
target data with m instances, Dt = {xj}n+m

j=n+1, unsupervised
domain adaptation learns a classifier f : xt → yt with a low
classification error on Dt, where Xs = Xt,Ys = Yt, Ps(xs) 6=
Pt(xt), and Q(ys|xs) 6= Q(yt|xt) [8].

Existing domain adaptation approaches can be divided into
two main categories: deep domain adaptation and shallow
domain adaptation [11]. Deep domain adaptation embeds
domain alignment into deep networks to learn discriminative
and domain-invariant deep feature representations, which can
significantly improve the learning performance on the tar-
get domain. Existing deep domain adaptation methods can
be further divided into three categories: reconstruction-based
methods, discrepancy-based methods, and adversarial-based
methods [12]. The reconstruction-based methods use a stack
auto-encoder to learn a domain-invariant representation for
the data reconstruction of the source and target data [13],
[14]. The discrepancy-based methods explicitly consider the
domain discrepancy by embedding an additional loss into

3

the objective function. Commonly used discrepancy metrics
include maximum mean discrepancy (MMD) [15], [16], [17]
and correlation alignment (CORAL) [18], [19]. Adversarial-
based methods are increasingly popular recently [20], [11],
[21]. In this case, a domain discriminator, which can identify
whether an instance is from the source domain or from the
target domain, is added to a deep network. The goal is to learn
a deep representation to confuse the domain discriminator.

Although deep domain adaptation methods achieve promis-
ing results, they are mainly applied to visual domain adap-
tation. In contrast, shallow or traditional domain adaptation
methods are more generalized in terms of applications. The
three most common shallow domain adaptation approaches
are instance-based approaches, feature-based approaches, and
classifier-based approaches (i.e. transfer classifier induction)
[4]. The instance-based approach considers that some source
instances are more relevant to the target domain than other
source instances. Therefore, this approach aims to re-weight
or to select source instances such that the domain discrepancy
is reduced. After that, a standard classification can be trained
on the re-weighted source data to classify the target data
[22], [23], [24]. The feature-based approach attempts to find
a feature transformation such that the discrepancy between
the transformed source and target data is minimized. An early
feature-based work is Transfer Component Analysis (TCA)
[25] where the goal is to extract a common latent subspace
such that the data variance is preserved and the distribution
difference, measured by MMD, is reduced. However, TCA
assumes that the two domains have the same conditional distri-
bution. Joint Domain Adaptation [26] addresses the limitation
of TCA by jointly adapting both marginal and conditional
distributions of the two domains. In addition to MMD, many
other discrepancy measures have been used such as Breg-
man divergence [27], and the Hilbert-Schmidt independence
criterion (HSIC) [28], [29]. Recently, Joint Geometrical and
Statistical Alignment (JSGA) [30] incorporates geometrical
information, such as the variance of the target domain and
the discriminative information in the source domain, to build
two coupled feature transformations for the source and target
domains. With an assumption that the source and target data
can be represented by a low-dimensional linear space, Gopalan
et al. [31] apply principle component analysis (PCA) to form a
Grassmann manifold, where the two domains are represented
as two points. A geodesic path between the two points reveals
information about domain changes. Many subspaces are drawn
from the path to find an intermediate subspace on which the
domain distance is smaller. Geodesic Flow Kernel (GFK) [32]
extends the idea in [31] by considering an infinite number of
subspaces. Instead of building a common subspace, some other
feature-based methods aim to directly map from the source
feature space to the target feature space [33], [34].

In both feature-based and instance-based approaches, do-
main alignment is performed first, and then a standard clas-
sifier is trained on the transformed source data to classify
the transformed target data. Domain alignment using feature
transformation or re-weighting instances is important in do-
main adaptation [35], [36], but learning a standard classifier
as a side-step may not guarantee the suitability between

the classifier and the transformed or re-weighted data. To
address the limitation, transfer classifier induction is proposed
to embed the domain alignment process into the process of
building an adaptive classier, which results in its superiority
over the other two approaches. Therefore, we focus on transfer
classifier induction in this paper. The following subsection
discusses transfer classifier induction in more detail.

B. Transfer Classifier Induction

A general frame work of transfer classifier induction
(ARTL) was formally introduced by Long et al. [8], where the
classifier model is f(x) = wTφ(x): w contains the classifier
parameters, and φ is a feature mapping function that projects
an original feature vector to a Hilbert space. Formally, a
domain invariant classifier f can be learned by minimizing
the following objective function:

Objective = (

n∑
i=1

l(f(xi), yi) + η||f ||2K)

+ λDf,K(Js, Jt) + ρMf,K(Ds, Dt) (1)

where K is the kernel function induced by φ such that
K(xi, xj) = 〈φ(xi), φ(xj)〉. Basically, the objective function
is designed so that the learned adaptive classifier achieves the
following three sub-objectives:
• minimizing the loss function on the source domain, which

is the first part of Eq. (1), i.e.
∑n

i=1 l(f(xi), yi)+η||f ||2K ,
• minimizing the distribution differences between the two

domains, which is the second part of Eq. (1), i.e.
Df,K(Js, Jt), and

• minimizing the manifold inconsistency on both source
and target data, which is the third part of Eq. (1), i.e.
Mf,K(Ds, Dt).

In Eq. (1), η, λ and ρ are regularization parameters used to
control the contributions of the three sub-objectives which will
be discussed as follows.

The first sub-objective is the loss function on the source
domain which is minimized by using the structural risk mini-
mization principle [37]. By adopting the Representer theorem
[38], the parameters of the classifier can be expressed as w =∑n+m

i=1 αT
i φ(xi). Following the expansion, the classifier can be

rewritten as f(x) =
∑n+m

i=1 αT
i K(xi, x). Therefore, learning a

classifier f is actually learning a matrix α ∈ R(n+m)×C , and
the structural risk function can be rewritten as following:

loss =
∥∥(Y−αT K)E

∥∥2
F
+ ηtr(αT Kα) (2)

where K is a kernel matrix corresponding to the function K
(Kij = K(xi, xj)), and Y is the label matrix. Since the labels
on the target domains are not available, the loss is calculated
on the source domain only, which is achieved by using the
indicator matrix E with Eii = 1 if i ≤ n, otherwise Eii = 0.
If there are some labeled target instances, their corresponding
elements in E can be set to 1 so the algorithm optimizes α
such that the loss on both source and labeled target instances
is minimized.

The second sub-objective is to minimize the data distri-
bution difference Df,K(Js, Jt), which can be measured by

4

Maximum Mean Discrepancy (MMD) [39]. Formally, the
difference can be computed by adding the difference of the
marginal distributions and the difference of the conditional
distributions:

Df,K(Js, Jt) = Df,K(Ps, Pt) +

C∑
c=1

D
(c)
f,K(Qs, Qt) (3)

Each component in Eq. (3) is calculated by the following
equation:

Df,K(Ps, Pt) =

∥∥∥∥∥∥ 1n
n∑

i=1

f(xi)−
1

m

n+m∑
j=n+1

f(xj)

∥∥∥∥∥∥
2

H

D
(c)
f,K(Ps, Pt) =

∥∥∥∥∥∥∥
1

n(c)

∑
xi∈D(c)

s

f(xi)−
1

m(c)

∑
xj∈D(c)

t

f(xj)

∥∥∥∥∥∥∥
2

H

where D
(c)
s , D

(c)
t represent the source and target instances

belonging to the class c, and n(c) = |D(c)
s |,m(c) = |D(c)

t |.
Using the expansion f(x) =

∑n+m
i=1 αiK(xi, x) and the MMD

matrix M, the domain difference can be formularized as:

Df,K(Js, Jt) = tr(αTKMKα) with M =

C∑
c=0

Mc (4)

where

(Mc)ij =



1
n(c)n(c) , xi, xj ∈ D(c)

s

1
m(c)m(c) , xi, xj ∈ D(c)

t

−1
n(c)m(c) ,

{
xi ∈ D(c)

s , xj ∈ D(c)
t

xj ∈ D(c)
s , xi ∈ D(c)

t

0, otherwise

(5)

Note n(0) = n,m(0) = m,D
(0)
s = Ds, D

(0)
t = Dt.

The last sub-objective exploits the manifold assumption
[38] to achieve a better classifier. The assumption is that if
two points xi and xj are geometrically close, they should
have similar conditional distribution. In other words, the two
instances should belong to the same class. Such assumption
can be expressed by the following equation:

Mf,K(Ds, Dt) =

n+m∑
i,j=1

f(xi)Lijf(xj)

= tr(αT KLKα) (6)

where L is the graph Laplacian matrix which can be calculated
by the following formula:

Lij =

{
cosine(zi, zj) , zi ∈ Np(zj) or zj ∈ Np(zi)
0 , otherwise

(7)

where N (zi) denotes the set of p-nearest neighbors to point
zi. In this work, p is set to 10 as recommended in MEDA [9].

By substituting Eq. (2), (4), (6) to Eq. (1), the goal is to
find a matrix α to minimize the following function:

Fitness =
∥∥(Y−αT K)E

∥∥2
F
+

tr(ηαT Kα+αT K(λM + ρL)Kα) (8)

By setting derivative of the objective function to 0, we obtain
the solution:

α = ((E + λM + ρL)K + ηI)−1EYT (9)

As can be seen in the equation, α depends on Y, but Y is
determined by α. To solve the problem, an iterative opti-
mization process is adopted. Firstly, a standard classification
algorithm is trained on the source data. The obtained classifier
is used to obtain pseudo-labels Y. From the pseudo labels,
a matrix α is calculated by Eq. (9). Based on the obtained
α, new pseudo-labels Y are generated. Such a procedure is
repeated until a maximum number of iterations is reached.
It has been shown that ARTL [8] achieves promising results
especially on datasets that are difficult to classify by standard
classification algorithms (extremely low accuracy). MEDA [9]
extends ARTL by applying GFK [32] as a preprocessing
step to align the feature space, i.e. reducing the marginal
distribution difference.

However, as a gradient-based approach, MEDA converges
prematurely to local optima. To address the above limitation,
P-MEDA [10] hybridizes population-based and gradient-based
mechanisms to evolve a transfer ensemble classifier. The
main idea of P-MEDA is to have each population member
starts from a promising point in the search space. At each
point, gradient descent is applied to achieve a local optimum
representing a promising classifier. Once the local optimum
is reached, P-MEDA re-initializes the corresponding popula-
tion member by using the local optima discovered by other
population members. After a certain number of generations,
P-MEDA then combines all the obtained local classifiers to
form an ensemble classifier. Experimental results show that
the hybridization can generate better classifiers than MEDA.
However, since the task is to optimize a high-dimensional ma-
trix α, the main component of P-MEDA is still the gradient-
based mechanism (as shown in Eq. (9)) and the communication
between population members is limited (mainly in the re-
initialization process). Besides, due to the unbounded values in
the matrix α, P-MEDA relies on a predefined set of classifiers
to initialize the population. In order to ensure the diversity of
the evolved ensemble classifier, a diverse set of classifiers is
required. However, due to the limited number of classifiers,
the population size of P-MEDA has to be small. In this work,
we address the above limitations by introducing a discrete
representation with much lower dimensionality.

III. PROPOSED ALGORITHM

Designing a population-based algorithm requires answers
for three essential questions: how to describe candidate so-
lutions (i.e. representation), how to evaluate the goodness
of candidate solutions (i.e. evaluation), and how to gener-
ate promising solutions based on the current solutions (i.e.
evolutionary mechanism). This section describes the proposed
transfer learning algorithm by answering the three questions.

A. Representation

In most existing transfer classifier induction approaches, the
classifier is represented by a matrix α, which is an (n+m)×C

5

0.6

0.20.3 0.4

0.10.2
1.0

1.00.6 0.2

0.10.6

0.20.1 1.0

X =
0.73

0.460.46 0.47

0.200.58

1 21

21

Representation	in	MEDA

Proposed	representation

Source Target

Fig. 1: Representation of transfer classifier induction for a
domain adaptation problem where the number of class C = 2,
the number of source instances n = 1, and the number of target
instances m = 2. MEDA [9] optimizes the α matrix. The target
labels are obtained by multiplying α (size (n+m)×C) with
the kernel matrix K. In contrast, the proposed representation
directly encodes the target labels as an integer vector (size m),
which does not require an additional matrix multiplication and
has much lower dimensionality.

matrix. To classify the target instances, a matrix multiplication,
αT ×K, is needed to obtain a C × (n+m) matrix in which
each column shows the likelihood that each instance belongs
to each of the C class labels. Hence, the matrix’s values can
be considered a set of weights which combines the kernel
values (similar to distances between any pairs of instances) of
the kernel matrix K. Finally, each instance is assigned to the
most likely class label. An example of the above process is
shown in Fig. 1. Thus, the labels for target instances (called
target labels) are the final output. Existing algorithms focus
on optimizing α. This optimization is challenging since α is
a high-dimensional matrix. The second problem is for each
target label, there are infinitely many α resulting in the same
target labels. Hence, although there are finite cases to label
the target instances, optimizing α has to explore an infinite
search space. Also, such representation requires a constraint
that α should correctly classify the source instances, which is
the first component in Eq. (1), i.e.

∑n
i=1 l(f(xi), yi)+η||f ||2K .

This constraint makes the optimization more complex.
The solution is, instead of optimizing α, the target labels

are optimized directly. Particularly, a candidate solution is
represented by a vector with m elements, as shown in the lower
part of Fig. 1. Each element corresponds to a target instance,
and its value shows which class the instance is assigned
to. In this case, the search dimensionality is significantly
reduced from (n + m) × C to m. Furthermore, the number
of possible candidate solutions is finite since each element
has C possible values. Such representation can also reduce
the computational complexity since it does not require an
additional matrix multiplication to obtain target labels as op-
timizing α. Note that the proposed representation is designed
to directly learn the target labels, which does not need to
learn α as an intermediate step. Thus, the proposed algorithm
searches directly the original discrete search space, while
existing unsupervised domain adaptation algorithms search the
intermediate continuous search space of α before outputting
the target labels. In combination with an evolutionary search
(which will be showed later), the algorithm is more likely

to achieve the global optimal solution or a close-to-optimal
solution. The classifier represented by the proposed algorithm
assigns the source labels to the source instances, so the
source labels are not included in the representation. Hence,
using the proposed representation removes the constraint of
correctly classifying the source instances, thus the source
classification performance in Eq. (1) can be safely removed.
Thereby, the fitness function becomes simpler which will be
explained in the following subsection. Although the proposed
representation is simple, it has not been used in existing
transfer classifier induction approaches since its elements are
integer values. Dealing with such discrete optimization is not
an easy task, especially when mathematical programs, more
specifically gradient-based techniques, are used. However,
genetic operators of population approaches can naturally cope
with such representations, which will be explained later.

B. Fitness Function

The new representation directly assigns class labels to
the target instances, whereas the class labels of the source
instances are already known. These source labels are not
included in the proposed representation. The classifier rep-
resented by the proposed representation always has 100%
accuracy on the source domain, which allows us to remove
the component related to the source classification performance
in Eq. (1), i.e.

∑n
i=1 l(f(xi), yi) + η||f ||2K . With the new

representation, the optimization goal is to minimize the two
remaining components: Df,K(Js, Jt) — the distribution dif-
ference, and Mf,K(Ds, Dt) — the manifold inconsistency.

A straightforward way to optimize the two above compo-
nents is to linearly combine them as in Eq. (1). However, such
a combination requires a proper setting for the regularization
parameters (λ and ρ) since the two components have different
ranges on different datasets. It is not trivial to find the proper
setting since different datasets have different scales and there
are no labeled instances in the target domain to tune the
parameters. We propose to optimize the two components by
adopting a hybrid optimization process combining an evolu-
tionary search and a gradient-based search. One component is
used as the main fitness function of the evolutionary search to
evaluate the candidate solutions. The top solutions generated
by the evolutionary search are refined by a gradient-based local
search guided by the remaining component.

We select the manifold consistency as the main fitness func-
tion since optimizing the manifold consistency can partially
reduce the distribution difference. The manifold assumption
states that if two data points, xs and xt are geometrically close
given similar marginal distributions Ps(xs) and Pt(xt), their
conditional distributions, Qs(ys|xs) and Qt(yt|Xt), should
be similar [40]. Therefore, the new fitness function should
minimize the manifold inconsistency M(f,K)(Ds, Dt) which
was defined as tr(αT KLKα) in Eq. (6).

However, under the proposed representation, there is no
explicit α. Each candidate solution z directly represents the
target labels, which is the result of (αT K). Thus, we can
rewrite the new fitness function of a candidate solution z as:

Fitness(z) = tr(Yz
T LYz) (10)

6

where Yz is an (n+m)×C label matrix defined by z, which
can be seen as following:

(Yz)ij =

{
1 , (i < n ∧ (ys)i = j) ∨ (i ≥ n ∧ (z)i = j)

0 , otherwise

Basically, Yz is an one-hot encoded matrix, where each row
corresponds to an instance. The row’s element corresponding
to the instance’s label is set to 1, and the other elements are
set to 0. If the instance is from the source domain (i < n), its
label is defined by the source label vector (ys). If the instance
is from the target domain (i ≥ n), its label is defined by the
candidate solution z.

In comparison with the original objective (Eq. (1)), the
proposed fitness function does not need to minimize the
loss function on the source domain. The main focus is to
minimize the manifold inconsistency, while the distribution
difference is minimized by a local search operator that is
explained in the following subsection. In comparison with the
fitness function of existing unsupervised domain adaptation
approaches (Eq. (8)), the proposed fitness function has the
following advantages over the original fitness function:
• it does not need to explicitly calculate the matrix α (Eq.

(9)), which avoids the matrix inversion operator,
• it obtains the class label directly from the new representa-

tion, which reduces the number of matrix multiplications,
• it removes the regularization parameter ρ in Eq. (1),
• it does not need to consider the loss in the source domain

since the new representation always classifies the source
instances using their existing labels.

In general, the overall goal of the proposed fitness function is
to reduce the number of matrix operations, so that the fitness
function is less computationally intensive, but still computes
the manifold inconsistency and evolves accurate target labels.

C. Population Evolution

In this subsection, we will discuss how to generate a new
and promising population based on the previous population.
We utilize two well-known genetic operators from GAs:
crossover and mutation. We also propose a local search to
minimize the distribution difference, i.e. Df,K(Js, Jt) in Eq.
(1). The details of each operator can be seen below.

1) Crossover: A genetic operator that combines the genetic
information from two parents to generate new offspring. To
be selected as parents, all the population members have to
undergo a selection process where the fitter member has more
chance to be selected. After selecting two parents, the elements
from the two parents are exchanged to form new offspring.
In this work, we utilize a single-point crossover, where all
elements beyond a randomly picked point is swapped. It is
expected that performing the crossover operator between two
good parents leads to promising offspring. An example of
applying the crossover operator is given in Fig. 2.

2) Mutation: Another genetic operator that aims to preserve
and/or enhance the population diversity. When the parents
become similar, crossover becomes less useful since the gener-
ated offspring are also similar. The mutation operator prevents
such situations by altering some elements of each population

3 21 132 1

1 12 113 2

3 11 113 2

1 22 132 1

Parents 1

Crossover Point

Parents 2

Offspring 1

Offspring 2

Fig. 2: An example of crossover, where the number of target
instances m is 7, the number of class labels C is 3.

Fig. 3: An example of mutation, where the altering probability
is set to C/m (C=3, m=7). The first, second, and sixth
elements are mutated (marked in red).

member, so the population members are less similar, i.e. im-
proving the diversity. Similar to crossover, the fitter population
member has more chance to be selected as the parent of
mutation. Note that mutation requires only one parent.

In this work, we adopt a common mutation, called bit-wise
mutation in which each element has a probability of being
altered. The common setting for the altering probability is
1/m, if each element is a binary value and m is the total
number of elements. In this work, since each element has
C possible values (class labels), the altering probability is
set to C/m with an expectation of preserving the population
diversity. In the proposed representation, each element is a
class label of a target instance. If an element is mutated,
its value will be changed to another class label. It can be
seen that the mutation operator is suitable for the proposed
representation since each element has finite possible values
(the number of class labels). An example of applying the
mutation operator is given in Fig. 3.

3) Local search for reducing distribution difference: Since
the fitness function focuses on the manifold consistency, we
propose a gradient-based local search to explicitly reduce
the domain difference. The main idea is to select the top
population members and modify them so that they also have
small domain differences. In each iteration, the local search
is performed after the two evolutionary operators (crossover
and mutation) are finished. Particularly, for each selected
member z, its corresponding label matrix Yz is built as in
Eq. (10). Based on Yz , a gradient step is applied to generate
the corresponding αz , which is similar to Eq. (9), except that
the manifold component is not included. Thus, αz can be
obtained by the following equation:

αz = ((E + λM)K + ηI)−1EYz
T (11)

Note that, although the main goal of local search is to reduce
the distribution difference, the generated αz needs to ensure
that the loss on the source domain is also minimized. The

7

main reason is that αz does not guarantee the source labels
are correctly predicted as in the proposed representation.
Therefore, the loss on the source domain is still used to
generate αz . From the obtained αz , new pseudo labels of
the target instances can be formed using the matrix αz

T K.
Finally, the new target labels are used to replace the selected
member z. As explained before, the manifold consistency and
the conditional distribution difference are partially related.
Performing conditional distribution alignment is likely to
improve the solution’s manifold consistency. In the worst case
where the local search causes a candidate solution to have
worse manifold consistency, such solution will be eliminated
by the selection process in the evolutionary process. Hence,
it is expected that the proposed hybrid optimization process
can lead to the optimal solution which has low manifold
inconsistency and low distribution discrepancy.

D. Overall Algorithm

The proposed algorithm starts with an initialization step,
where each individual is randomly initialized. As discussed
in Subsection III.A, each individual can be considered labels
of target instances. To initialize an individual, a random class
label is randomly picked for each instance. After finishing the
initialization step, the population is evaluated using Eq. (10).

Then, a new population is generated based on the current
population. Firstly, a selection mechanism is applied to select
parents for the crossover and mutation operators. The selection
is designed so that the fitter individuals are more likely to be
selected. The idea is to expect promising offspring generated
from good parents. The algorithm also adopts elitism, which
means the best solution from the current generation is copied
directly to the new population. The elitism is to ensure that the
new population is at least as good as the current population.
The above steps are basic and essential in genetic algorithms.

The next step is to apply the proposed local search oper-
ator to reduce the distribution difference. Firstly, the newly
generated population is evaluated by Eq. (10). Based on the
fitness values, the top best individuals of the population are
selected to undergo the local search at each iteration. The
number of top individuals balances the evolutionary search
and the gradient-based search. In this work, the gradient-based
method is applied to the top 10% of the population. The
first reason is that we would like to reduce the distribution
differences of the individuals which already have low manifold
inconsistencies. It is not worth performing the gradient-based
method on solutions with high manifold inconsistency since
the final goal is to have a solution which has low distribution
difference and manifold inconsistency. Secondly, applying the
gradient-based method to a large number of individuals may
significantly reduce the population diversity which is likely to
result in a local optimal solution. The solutions obtained by the
gradient-based search replace their parents in the population.

The process “selection → crossover → mutation →
local search” is repeated until a maximum number of itera-
tions is reached. The final best solution is selected as the class
labels of the target instances. Since the proposed algorithm
is designed based on genetic algorithms and MEDA [9], we

Initialize	the	population

Maximum	number
iterations?

Return	the	best	solution	as
the	classifier

Evaluate	all	individuals

Parents	selection	for	the
next	population

Perform	crossover	on	the
selected	parents

Perform	mutation	on	the
selected	parents

Perform	local	search	on
the	top	10%	individuals

Evaluate	all	individuals	in
the	new	generation

Yes

No

Fig. 4: Overall process of G-MEDA.

called the proposed algorithm G-MEDA. The overall process
of G-MEDA can be seen in Fig. 4.

IV. EXPERIMENTAL DESIGNS

A. Benchmark Datasets

G-MEDA is tested on three real-world datasets: Amazon
Review [41], Office+Caltech10 [42], [31], and Office-31 [43].
These datasets have been widely used as benchmark problems
for many domain adaptation algorithms [9], [30], [32]. Table
II lists the details of each of these datasets.

Amazon Reviews contains almost reviews for four different
types of products from Amazon.com: Books (B), DVDs (D),
Electronic (E), and Kitchen appliances (K). Each review can be
negative (3 stars or lower) or positive (higher than 3 stars) [41],
[44] Similar to Office+Caltech10, we can form 12 domain
adaptation cases for this dataset.

Office+Caltech10 contains four different image domains:
Amazon (A), DSLR (D), Webcam (W), and Caltech-256 (C).
The four domains have the same task which is to classify
an image to an office item (in total there are 10 item types).
For Office+Caltech10, 800 SURF features are extracted from
each image. By selecting two different domains as the source
domain and target domain, respectively, we can form 3 × 4 =
12 domain adaptation cases, such as A→C, A→D, ..., W→D.

Office-31 has three image domains: Amazon (A), DSLT
(D), and Webcam (W) with 31 categories. We follow the
convention of [45] to perform the experiments, where Resnet-
50 is trained on the source domain, and 2048 features are
extracted from the obtained model. Based on this dataset, we
can form 3 × 2 = 6 domain adaptation cases.

8

TABLE II: Domain adaptation datasets.

Dataset #Sample #Feature #Class Domains
Amazon Review 7,996 400 2 B, D, E, K

Office-10 1,410 800 10 A, W, D
Caltech-10 1,123 800 10 C
Office-31 4,110 2048 31 A , W , D

B. Benchmark Techniques

Firstly, we compare the performance of G-MEDA with three
standard classification algorithms: KNN where K=1 (1NN),
random forest (RF) where the number of trees is set to
128 [46], and support vector machines (SVM) with the RBF
kernel. The three classification algorithms are trained directly
on the source data and then applied to the target data. We
also compare G-MEDA with seven state-of-the-art traditional
domain adaptation methods and four deep domain adaptation
methods. The comparisons are based on the accuracy of the
target domain.

The seven state-of-the-art traditional (shallow) domain adap-
tation methods include:
• Transfer component analysis (TCA) [25] which reduces

the marginal distribution difference via feature subspace
learning.

• Joint distribution alignment (JDA) [26] which reduces
both marginal and conditional distribution differences.

• Transfer joint matching (TJM) [47] which reduces the
marginal distribution difference by building a new feature
subspace and selecting source samples.

• Joint geometrical and statistical alignment (JSGA) [30]
which builds two feature subspaces for the source and
target domains, where the two subspaces should make
the two domains closer.

• Geodesic flow kernel (GFK) [32] which performs mani-
fold feature learning.

• Manifold embedded distribution alignment (MEDA) [9]
which builds an adaptive classifier.

• Population-based MEDA (P-MEDA) [10] which adopts
the population-based mechanism to build an ensemble
adaptive classifier.

The four deep domain adaptation methods include:
• Deep adaptation network (DAN) [16] which reduces the

domain difference by embedding multi-kernel MMD into
the network.

• Domain adversarial neural network (DANN) [11] which
learns domain-invariant “deep” features by adding one
domain classifier at the last block.

• Collaborative and adversarial network (CAN) [21] ex-
tends DANN [11] by adding one domain classifier to each
of the network blocks.

• Joint domain alignment and discriminative feature learn-
ing (JDDA) [17] which aims to learn features that are not
only domain-invariant but also discriminative.

In terms of parameter settings, for each dataset, we pick
only one domain adaptation case to tune the parameters. The
obtained parameters are applied to all other cases in the
dataset. The regularization parameters are searched in {0.1,

TABLE III: Comparisons with three standard classifiers.

Datasets Cases 1NN RF SVM G-MEDA

Amazon Review

B → D 55.33 73.09 73.14 75.29
B → E 58.56 74.07 72.67 76.35
B → K 56.68 76.74 77.14 78.44
D → B 56.50 74.25 71.10 71.05
D → E 58.21 75.18 74.32 76.74
D → K 56.68 76.74 77.14 78.45
E → B 55.40 68.05 67.70 67.35
E → D 56.13 69.08 69.63 72.14
E → K 65.13 81.74 81.69 83.14
K → B 56.45 66.85 70.60 67.81
K → D 59.53 67.63 70.69 72.34
K → E 64.51 76.68 78.18 78.62

Office+Caltech10

A → C 26.00 33.93 7.57 47.17
A → D 25.48 33.76 6.37 45.73
A → W 29.83 33.22 9.15 49.41
C → A 23.70 40.40 9.60 57.64
C → D 25.48 37.58 7.64 54.76
C → W 25.76 35.93 9.83 53.13
D → W 63.39 44.75 10.17 90.88
D → A 28.50 25.68 10.44 43.52
D → C 26.27 26.09 11.40 33.17
W → A 22.96 28.91 10.33 42.57
W → C 19.86 22.35 11.84 31.01
W → D 59.24 63.06 14.01 91.23

Office-31

A → D 79.12 62.85 3.61 87.65
A → C 75.85 62.26 3.14 87.47
D → A 60.17 41.29 3.55 71.40
D → W 95.97 66.16 3.77 97.38
W → A 59.92 46.57 3.51 72.56
W → D 99.40 71.29 4.42 99.70

1.0, 10.0}, and the dimensionality of the new feature subspace
is searched in {10, 20, 30, ..., 90}, which follows the protocol
in [9]. All algorithms use the RBF kernel with a kernel width
of 0.5. Results of the deep domain adaptation methods are
obtained from their original papers.

In P-MEDA [10], the population size is 10, and the maxi-
mum number of iterations is 10. In G-MEDA, the population
size is 50, and the maximum number of iterations is 10.
Since P-MEDA needs a diverse set of classification algorithms
to initialize its population, we keep its population size as
investigated in the original paper. A further comparison be-
tween G-MEDA and P-MEDA with the same population size
can be seen in the supplementary material1. Both P-MEDA
and G-MEDA are run 30 independent times on each domain
adaptation case.

V. EXPERIMENTAL RESULTS

A. Comparison with Standard Classification Algorithms

The comparisons between G-MEDA and the three standard
classification algorithms on 30 domain adaptation cases are
shown in Table III, where the best accuracy is marked in bold.
In comparison with 1NN, G-MEDA achieves significantly bet-
ter performance on all datasets. On Amazon Review, G-MEDA
improves at least 10% accuracy over 1NN on all cases. On
Office+Caltech10, G-MEDA’s accuracy is about 22% higher
than that of 1NN. The most significant improvement is on the
W→D case, where G-MEDA improves more than 30% over
1NN. On the Office-31 dataset, since the features are extracted

1https://ecs.wgtn.ac.nz/foswiki/pub/Main/BachNguyen/GMEDASup.pdf

9

from the Resnet-50 network, 1NN achieves quite a high
accuracy (78.41% on average). However, by building adaptive
classifiers, G-MEDA can still improve the performance over
1NN. The most significant improvement is 13% on the W→A
case. RF and SVM achieves better accuracies than 1NN on
Amazon Review, but they are still worse than G-MEDA on
most cases. On Office+Caltech10 and Office-31, G-MEDA is
better than RF and SVM on all cases. It seems that the domain
discrepancy of the two latter datasets is much larger than the
Amazon Review dataset, which deteriorates the classification
performance of RF and SVM.

In general, the experimental results show that G-MEDA can
evolve an adaptive classifier that achieves better performance
than standard classification algorithms without any adaptation
mechanisms.

B. Comparison with Traditional Domain Adaptation Methods

The comparisons on the three datasets: Amazon Review,
Office+Caltech10, and Office-31 are shown in Tables IV, V,
and VI, respectively. In each domain adaptation case, the best
accuracy is marked in bold. As can be seen from three tables,
feature-based domain adaptation methods perform well on
some specific datasets. For example, TCA and TJM achieve
good performance on Office+Caltech10, while JSGA and GFK
achieve good performance on Amazon Review. In comparison
with such feature-based methods, MEDA seems to achieve
better performance on all datasets. Particularly, MEDA is
about 10% , 6%, and 4% more accurate than the best feature-
based methods on Amazon Review, Office+Caltech10, and
Office-31, respectively. The most significant improvement of
MEDA over other domain adaptation methods is 14% on the
B→K case. The results suggest that it is better to evolve an
adaptive classifier instead of using a standard classifier on a
set of domain-invariant features.

MEDA and G-MEDA have comparative results on the Of-
fice+Caltech10 dataset, where G-MEDA is better than MEDA
in six cases. On the Office-31, G-MEDA achieves better
accuracy than MEDA on four out of the six cases. Meanwhile,
on the Amazon Review dataset, G-MEDA is significantly
better than MEDA on 11 out of the 12 cases. It can be
seen that G-MEDA achieves more reliable performance than
MEDA. The possible reason is in the fitness function, where
MEDA needs a parameter to balance between the distribution
difference and the manifold consistency. Such parameter can
be different for different datasets, or even different cases. In
contrast, G-MEDA avoids the parameter by optimizing the
two components in two steps, which makes G-MEDA more
generalized than MEDA.

We also adopt the Friedman significance test at a sig-
nificance level of 0.05, to compare between G-MEDA and
the other algorithms. The results can be seen in Table VII.
“W/D/L” means the number of cases that G-MEDA is statis-
tically significantly better, similar, or worse than a benchmark
algorithm. “Ave Rank” shows the average ranking of algo-
rithms on all 30 cases. As can be seen from the table, all
feature-based methods are significantly worse than G-MEDA
on almost all the 30 cases. G-MEDA builds an adaptive

classifier based on the features generated by GFK, while
GFK uses 1NN. The results show that G-MEDA significantly
outperforms GFK on all 30 cases, which show the importance
of building an adaptive classifier. Among the seven benchmark
algorithms, P-MEDA achieves the highest rank, which shows
that the population-based mechanism is effective in evolving
the adaptive classifier. However, in comparison with G-MEDA,
P-MEDA is significantly worse on 17 out of the 30 cases.

The results show that the proposed search mechanism and
fitness function assist G-MEDA in controlling the distribution
difference and manifold consistency more adaptive, which
leads to the superiority of G-MEDA in most cases.

C. Comparison with Deep Adaptation Methods

The comparison is performed on the Office-31 dataset which
has been widely used by many deep adaptation methods. The
comparison can be seen in Table VI. Among the four deep
methods, DANN [11] and CAN [21] achieve higher accura-
cies than DAN [16] and JDDA [17]. The major difference
between the four algorithms is in the way they handle the
domain difference. DAN and JDDA are two discrepancy-
based methods which use two traditional divergence measures,
MMD and CORAL, respectively. In contrast, DANN and
CAN adopt adversarial learning which aims to confuse a
domain classifier, i.e. the network cannot distinguish between
source instances and target instances. The results show that
the adversarial method is more suitable for deep domain
adaptation. A possible reason is that the adversarial learning
is still based on classification, which is more consistent with
the design of deep neural networks for classification than the
discrepancy-based methods.

As can be seen from Table VI, G-MEDA achieves better
accuracy than DANN and CAN on four out of the six cases.
The average accuracy of G-MEDA is about 4% higher than
that of DANN and CAN, which illustrates the stability of
G-MEDA on different domain adaptation cases. The results
suggest that the high performance of deep domain adaptation
methods is mainly contributed by the power of the represen-
tation learning in Resnet rather than the adversarial learning.
The advantage of G-MEDA is that it requires only one fine
tune process to obtain its feature inputs (Resnet features). In
contrast, the deep methods need to run multiple times to get
the optimal parameter setting, which is less applicable than
G-MEDA since many real-world applications have very little
or even no labeled target instances with which to optimize the
parameters.

D. Computation Time

The computation time of G-MEDA can be seen in Table
VIII. We compare the efficiency of G-MEDA with P-MEDA
and MEDA. The first reason is that they are closely related.
The second reason is that MEDA is already shown to be as
efficient as other benchmark traditional methods [9]. In cases
with a small number of instances, such as D →W , W → D,
it is not much different between G-MEDA and MEDA. When
the number of instances is larger, the difference between G-
MEDA and MEDA is more visible. It seems that G-MEDA

10

TABLE IV: Comparisons with traditional domain adaptation methods on Amazon Review.

Cases TCA JDA TJM JGSA GFK MEDA P-MEDA G-MEDA
B → D 58.18 58.38 56.98 58.78 57.23 69.28 70.15 75.29
B → E 60.11 57.01 57.26 59.56 57.16 72.02 73.31 76.35
B → K 59.23 56.38 58.83 58.63 57.88 73.19 72.82 78.44
D → B 53.15 56.50 57.50 55.65 56.20 63.10 65.35 71.05
D → E 57.86 56.41 59.71 59.36 59.26 72.07 73.83 76.74
D → K 59.23 56.38 56.83 58.78 57.88 73.19 75.35 78.45
E → B 53.75 56.75 58.90 58.30 56.65 67.55 68.57 67.35
E → D 58.08 56.13 56.93 58.93 56.03 66.93 68.96 72.14
E → K 64.08 59.68 62.63 66.43 65.88 79.34 80.37 83.14
K → B 55.10 53.60 57.65 58.30 57.15 66.15 66.56 67.81
K → D 58.28 57.03 57.33 61.43 59.38 65.58 66.64 72.34
K → E 64.36 59.71 63.21 65.37 64.51 76.08 77.04 78.62
Average 58.45 57.00 58.65 59.96 58.77 70.37 71.58 74.81

TABLE V: Comparisons with traditional domain adaptation methods on Office+Caltech10.

Cases TCA JDA TJM JGSA GFK MEDA P-MEDA G-MEDA
A → C 39.72 39.45 39.45 27.96 39.00 44.52 43.28 47.17
A → D 31.21 31.85 44.59 27.39 33.12 45.86 46.67 45.73
A → W 41.02 34.24 43.39 24.07 36.95 53.22 47.60 49.41
C → A 46.66 44.68 43.32 40.61 41.75 56.58 55.82 57.64
C → D 45.86 35.67 45.86 28.66 39.49 50.32 58.66 54.76
C → W 39.32 33.22 46.10 32.54 40.68 53.90 56.75 53.13
D → W 89.83 85.08 88.14 74.58 83.05 87.46 84.14 90.88
D → A 32.46 31.84 32.05 59.71 34.55 40.19 40.08 43.52
D → C 33.93 31.70 28.85 37.04 30.28 34.73 35.85 33.17
W → A 30.06 29.44 29.23 56.16 33.51 42.80 42.07 42.57
W → C 32.32 32.59 32.50 38.56 28.32 33.66 34.21 31.01
W → D 91.10 85.35 85.99 77.07 85.35 89.17 85.73 91.23
Average 46.28 42.92 46.62 43.70 43.84 52.70 52.57 53.35

TABLE VI: Comparisons with traditional and deep domain adaptation methods on Office-31.

Cases Traditional methods Deep methods G-MEDATCA JDA TJM JGSA GFK MEDA P-MEDA DAN DANN CAN JDDA
A → D 78.92 77.51 83.73 12.05 78.51 85.94 85.74 78.60 79.70 65.90 79.80 87.65
A → W 76.48 74.72 79.62 19.62 74.34 85.91 86.34 80.50 82.00 81.50 82.60 87.47
D → A 65.96 65.46 66.06 68.48 62.58 72.38 72.51 63.60 68.20 99.70 57.40 71.40
D → W 96.73 95.72 95.97 92.70 95.72 96.98 96.73 97.10 96.90 63.40 95.20 97.38
W → A 65.64 64.50 68.19 64.00 63.51 73.27 72.90 62.80 67.40 98.20 66.70 72.56
W → D 99.60 99.60 98.80 86.14 99.40 99.40 99.00 99.60 99.10 85.50 99.70 99.70
Average 80.55 79.58 82.06 57.17 79.01 85.65 85.54 80.40 82.20 82.40 80.20 86.03

TABLE VII: Results of significance tests comparing between
G-MEDA and other traditional benchmark algorithms

TCA JDA TJM JSGA
W/D/L 27/2/1 29/0/1 29/0/1 26/0/4

Ave Rank 5.1 6.7 5.4 5.6

GFK MEDA P-MEDA G-MEDA
W/D/L 30/0/0 18/6/6 17/6/7 N/A

Ave Rank 6.3 2.6 2.5 1.8

is at most four times more expensive than MEDA. However,
on a large dataset such as Amazon Review, G-MEDA takes at
most 150 seconds (2.5 minutes), which is still quite efficient.

Compared with P-MEDA, G-MEDA is much more efficient.
For example, on Office+Caltech10, G-MEDA can be up to
ten times more efficient than P-MEDA. Such efficiency of
G-MEDA is due to the proposed representation and fitness
function. Firstly, representing the classifier by an integer vector
is more efficient than using a matrix with continuous values,
since it does not require an additional matrix multiplication
to obtain labels for the target instances. More importantly,

the proposed representation allows G-MEDA to use genetic
operators, which is more efficient than P-MEDA that relies
heavily on gradient steps consisting of many matrix operators.
The main fitness function of G-MEDA (Eq. (10)) also contains
a much smaller number of matrix operations than that of
P-MEDA (Eq. (8)). Therefore, G-MEDA is computationally
much cheaper than P-MEDA even though G-MEDA has a
larger number of evaluations than P-MEDA.

E. Analysis on the Adaptive Classifiers

To analyze the obtained classifier, we visualize the source
and target data on the Caltech+Office10 dataset. Fig. 5 shows
the visualization on two cases, D→W and A→W, where
G-MEDA has better and worse performance than MEDA,
respectively. The visualization is based on t-SNE [48]. As
can be seen from the figure, both G-MEDA and MEDA can
successfully transform the two domains such that they have
similar marginal and conditional distributions. The accuracies
of the two methods on D→W are high (about 90%). The
main reason is that both G-MEDA and MEDA use GFK

11

−5 0 5 10
−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

111111
111111

222
222
2 2

222
22 2 2

22222 2

3333

3333

33

33

4

4
444

4

44
444

44

55
55

55

55

55
6

66

6

66

6

6

6
6
6
66 6
6

6
6

6 6

6

6

6

6

6

7777

7
77

7
7777

7

7

7

7
77

7

7

77

888
8

88

8 8 88

88

9

99999

9

9

1010

10

10

101010

10

1010

10

1010

10

10
10

10

10

10

10

10

10
10

Source

−5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

111
11111111

11111
11

111 1 111
11 11

222222
222 2
2222 2
22222 2

3 33 333 3333 3

33333333333

33333

33 33

444

4

4 44444 444444
444444

44

44
4

55

5
55 555555555

55555555

55 555 6
66
666

6

66

6

66 66
66

66 6

66

6

6 6

6

6
6
66

6

7777

7
7

7

7777
77

7
77

7

7

7

7

77 7
77

7
7
7

7777

7

7

7

7
77

7777 7

8 8
8888888888

888
888888888
8
8

8

8

8 8

99
999

99999
9999999 9999

9999 99

10101010

10

101010

10
10

10
1010

10

10

10
10

10

1010

10

1010

101010

10

1010

10

Target

−5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10110
11111010101111110

11
111 1 111

11 11

222222
222 2
2222 2
22222 2

3 33 333 3333 3

33333333333

33333

33 33

444

4

4 44444 444444
444444

44

44
4

55

5
55 555555555

55555555

53 335
6

66
666

6

66

6

76 77
6666 7

42

6

6 6

1

2
6
66

6

7777

10
7

7

7777
77

7
77

7

7

4

1

77 7
710

6
7
7

7777

7

7

7

7
77

7777 7

8 7
8888888888

888
848888888
8
8

8

7

8 7

88
888

99999
9999999 9999

9999 89

10101010

4

101010

7
10

10
1010

2

10

10
10

10

1010

7

1010

101010

7

1010

10

MEDA

−5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10110
11111010101111110

11
111 1 111

11 11

222222
222 2
2222 2
22222 2

3 33 333 3333 3

33333333333

33333

33 33

444

4

4 44444 444444
444444

44

44
4

55

5
55 555555555

55555555

55 555
6

66
666

6

66

6

66 76
6666 6

46

6

6 6

6

6
6
66

6

7777

10
7

7

7777
77

7
77

7

7

4

1

77 7
710

6
7
7

7777

7

7

7

7
77

7777 7

8 4
8888888888

888
848888888
8
8

8

7

8 4

99
888

99999
9999999 9999

9999 89

10101010

6

101010

7
10

10
1010

2

10

10
10

10

1010

10

1010

101010

7

1010

10

G-MEDA

(a) D → W

−10 0 10

−15

−10

−5

0

5

10

15

20

1
111 1
1
111 1

11 1

1

11111

1

1
11

1
1

1

1
1

1
11 1

11
1

1
1

1
11

1

1

1

1
1
11

1

1

1

1

1
1

1

1

11
11

1

1 1

1
1

1

1

1

1

1

11 1

1

1

1 1

111

1 1

1

1

1
1

1

1

11
11

1

222222

2

222
22

2
2
22222 222
222

2

2 22 222
2
22 22

22
222222
2
2222
22
2
22

22

2

2
22

2

222
22222222222

2

22

2
2
2

3

3

3
3 33

3

3

3
3

3

3
33

3
3

3 33

3
3

3

3
3

3 3

3

3 33333
3

3

3

3
3

3
3

3

3

3
3

3
3

3
3
3

3
3

33
3 3

3

3

3

3

3

3
3

3

3
3

3

3

33
3

3
3

3

3

3

3

3

3

333
3

3

3
3

3

3
3

3

3 3

33

3

444
4 4

4

4

4

4
4

4

4

4

4

4

4
4

4

4

4

4

4

44
4

4

4
44

4

4

4

4

4
4 4

44

4
4

44

4
4

4

4
44

4
4

4

4

4

4 44

44

4
4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4
4

4

4

4

4

4

44
4

4

44
4

4

4 4

4

4
4

4

4

44

4

55

5

5 5 5

5

55

5
55

5

5

55
5

5
5
5

5

5

555
5

5

55
5

5

5

5

5
55 5

5

5

55 5
5

5

5

5

55

5

5

55

5
55

5

5
5

5

5

5

5

5

55

55

5

5

5
5

5

5

5 5

5

5

5

5

5

5

5

5

5

5
5

5
5

5

5

5

5

5

5

5
5
5

5
55

6

6

6

6

6
6

6

6

6

6

6

6

6

6 6

6
666

6

6
6

6
6

6

6 6

6

66
6

6

6

6

6
6
6

6

66
6

6 6
6

6
6
66

66 6

6

6 6

6
66

6

6

6

6

6 6

6
66

6

6

6
6

6

66

6

6

6

6
6

6

6

6

6

6

6
6 6

6

6
6

66

6

6

6

6

66
66

6

7777
7

7

7

77

7
77

7

7

7

7

77

7
7

7

7
7

7 7
7

7

7

7

7

7 7
7

7

7

7

777
7

7

7

7
7

7

777

7

7

7

7

7

7
7

7

7

7
7

77

7 7

7

7
7

7

77

7 7

7

7

7

77

7

7

7

7

7

7

7

77

7

77 7

7

7 7
7

7
7

7

7 7

7

8

8

88 8
8
8

8
8 8

8

8

8

8

8

8

8
8

8

8

88
8

8

8

8
8 8
88

8

8
8

8

8

8

8

8

8
8

8

8

8
88

8

8

8

8
8

8

8

8

8
8

8 8

8

888

8 88

8

88

8

8

8

8

8

8
8

8
8

8
88

8

8

88

8

8

8

8

888

8
8

8

8

8

88

88

8
99

9

9

9
99

9

9

9

9

9

99

9

9
9

9

9

9

9

9

9

99
9

9

9

9

9
9

9

9

9

9

9

9
9

9

9

9 9

9

9

9

9

99

99
9

9
99

9

9

9

9

99
9

9

9 9 9

9
9

9
9

9

9

9

9

9

99

9

9
9

9

9 9

9

9

9
999 9 9 9

9 9

9

10

10

10

10

10

1010
10

10

10

10

10

10

10

10

10

10

1010

10

10

1010
10

10

10

10
10

10

101010 10

10

10
10

1010

10

10

10

10

10
10

10

10

10

10

10
10

10 10101010

10 1010

10
10

10

10
1010

10
10

10

10

1010

10

10

1010
1010

10
10

1010

10

10

10

10
10

10

1010

10
10

10

10

10

10

10

10

10
10

Source

−10 0 10
−15

−10

−5

0

5

10

15

20

1111111
11

11111111
1

1111111111
1

222222222

2

2222
2
22222
2

3
3
3
3

3
3
3
333
3
33333333333

33333

33 3
3

44

4 4

444444 4444444444 44

44

44

4

55

5
55
5

5 5
5555
55

55555555

55 555

666

66
6

6

666

6
666
66

6
6

6

6

6

66

6

6

6

6

6

66 777

7

7

7

7
777777

7
77

7

7

7

7

7
7

7
7

7
7 7 7

777
77 77

7
7
77777 7

8
88888888

888

88888 88888888
8

88

8

8

99999

99999 99999999999

999999
10

101010

10 10

10

101010

10

1010

10

10

101010 1010

10

1010
1010

1010

101010

Target

−10 0 10
−15

−10

−5

0

5

10

15

20

1188111
11
11111111
1

1111111111
1

222222222

2

2222
2
22222
2

3
3
3
3

3
3
3
333
3
33333333333

33333

33 3
3

44

4 4

444444 4444444212 42

11

44

1

66

5
55
5

5 5
5555
55

55555555

53 555

1077

1010
10

4

71010

10
776
56

5
5

8

4

2

910

4

2

2

10

4

1010 676

8

10

8

6
181666

4
76

4

4

4

9

6
8

6
6

8
7 6 8

666
104 104

10
7
88887 7

8
88888888

888

17784 79999991
9

106

10

4

99999

77777 77777777777

999999
6

666

8 9

6

978

7

11

4

4

1110 77

10

67
11

84

81 8

MEDA

−10 0 10
−15

−10

−5

0

5

10

15

20

1188111
11
110111111
1

1114444911
1

222222222

7

2222
2
22222
2

3
3
3
3

3
3
3
333
3
33333333333

33333

33 3
3

44

4 4

41010101010 10499994212 102

11

410

1

66

5
55
5

5 5
5555
55

55555555

53 559

1076

1010
10

4

6104

10
766
106

5
10

8

10

2

410

4

6

2

7

4

1010 6910

4

10

8

6
981666

4
76

4

4

4

9

6
10

7
6

8
10 6 10

666
104 104

10
7
810101010 6

8
88888888

888

17781 79999861
6

97

10

4

99999

77777 77777777777

999999
9

686

8 9

10

978

7

11

4

4

1110 11

10

11
11

89

81 1

G-MEDA

(b) A → W

Fig. 5: Visualization of adaptive classifiers on the Caltech+Office10 dataset.

TABLE VIII: Computation times (in seconds).

Datasets Cases MEDA P-MEDA G-MEDA

Amazon Review

B → D 35.78 454.60 149.38
B → E 36.44 460.16 142.12
B → K 34.97 542.41 135.39
D → B 32.78 542.54 125.39
D → E 33.50 491.86 128.58
D → K 33.52 527.65 128.46
E → B 32.52 479.95 124.05
E → D 33.15 511.27 126.47
E → K 33.52 531.58 128.50
K → B 32.26 520.81 123.25
K → D 31.00 488.24 117.25
K → E 31.64 551.96 120.26

Office+Caltech10

A → C 13.52 205.22 55.64
A → D 4.29 94.70 9.54
A → W 5.17 114.14 12.06
C → A 13.22 252.25 44.04
C → D 5.11 139.04 12.58
C → W 6.08 161.69 15.86
D → W 2.46 7.29 3.15
D → A 4.36 25.13 20.25
D → C 5.10 49.44 12.68
W → A 5.00 39.60 12.23
W → C 5.85 59.21 15.37
W → D 2.35 11.10 2.91

Office-31

A → D 61.27 5706.80 172.94
A → W 71.20 5957.05 208.23
D → A 66.19 792.03 197.06
D → W 34.49 261.08 33.26
W → A 75.31 1124.53 242.42
W → D 28.24 403.20 38.41

as a pre-processing step to transform the feature space to
reduce the distribution difference first. On the D→W case,
GFK can build a feature subspace on which different classes
are separable, so the two methods achieve good classification
performance. In contrast, G-MEDA and MEDA achieve low
classification performance on A→W. As can be seen in Fig.
5(b), in the source domain, instances from different classes
are not clearly separable, which results in poor performance
on the target domain. Such results illustrate the importance of
the preprocessing step in MEDA and G-MEDA.

MEDA and G-MEDA assign quite similar class labels to the
target instances. Their main differences are marked in the red
rectangle. On the case D→W, while G-MEDA classifies all the
instances within the red rectangle as class 5, MEDA assigns
some instances to class 5 and some other instances to class 3.
In the rectangle area of the source domain, there are only two
instances from class 5, but there are many instances from the
class 3 surrounding the rectangle area. It seems that MEDA
focuses much more on the manifold consistency than the
conditional distribution difference. In other words, MEDA’s
decision is affected more by the surrounding instances. Such
behavior is because the manifold component usually has much
larger values than the distribution difference components. A
similar pattern appears in the case A→W. Particularly, G-
MEDA assigns some instances in the red rectangle to the class
10, while MEDA does not assign any instance to the class
10. In fact, in the source domain, the rectangle area contains
an instance that is from class 10, so G-MEDA reduces the
conditional distribution difference better than MEDA.

The analysis shows that MEDA needs a good parameter
setting to control the two objectives, i.e. the manifold consis-

12

1 2 3 4 5 6 7 8 9 10
Iteration

0.2

0.4

0.6

0.8

1.0
Di
st
an

ce

Convergence
Dataset
A->C
A->D(31)
B->D

Fig. 6: Convergence curves of G-MEDA.

tency and the distribution difference. However, such a setting
is difficult (if not impossible) to obtain since the setting not
only depends on the dataset but also changes during the opti-
mization process. G-MEDA achieves both objectives through
a hybrid approach of evolutionary-based and gradient-based
search, where each search aims to optimize one objective. It
can be seen that G-MEDA offers a better approach to handle
both objectives, which can be applied to different datasets.

F. Convergence Analysis

We validate the convergence of G-MEDA via the average
distance between individuals in the population. The distance
between two individuals zi and zj is calculated by the
following formula:

dij =
H(zi, zj)

m
(12)

where H(,) is the Hamming distance, m is the length of each
individual. Basically, dij is the ratio between the number of
bits where zi and zj are different and the total number of bits
(m), so dij ∈ [0, 1]. The distance of the whole population P
can be obtained by the following formula:

Dis(P) =

∑|P |−1
i=1

∑|P |
j=i+1 dij

|P |×(|P |−1)
2

(13)

The distance is designed so that Dis(P) ∈ [0, 1] for any
datasets. The smaller Dis(P), the more converged the popula-
tion. To examine the convergence of G-MEDA, we record the
distance of its population at each iteration. The convergence
curves of G-MEDA on three domain adaptation cases A→ C
(Office+Caltecth10), A → D (Office31), and B → D
(Amazon Review) are shown in Fig. 6. It can be seen that
G-MEDA can reach a steady state after 10 iterations. The
population distance is around 0.03 for the three cases, which
means two individuals are different at 3% of all their bits.
The results show that G-MEDA can effectively evolve good
classifiers in a small number of iterations.

G. Parameter sensitivity analysis

As a population-based algorithm, G-MEDA has three main
parameters: the maximum number of iterations, the population

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

A->C

p < 0.001
p < 0.01
p < 0.05
NS

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

A->D(31)

p < 0.001
p < 0.01
p < 0.05
NS

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

B->D

p < 0.001
p < 0.01
p < 0.05
NS

(a) Different mutation rates.

20 50 100 200

20
50

10
0

20
0

A->C

p < 0.001
p < 0.01
p < 0.05
NS

20 50 100 200

20
50

10
0

20
0

A->D(31)

p < 0.001
p < 0.01
p < 0.05
NS

20 50 100 200

20
50

10
0

20
0

B->D

p < 0.001
p < 0.01
p < 0.05
NS

(b) Different population sizes.

Fig. 7: Parameter sensitivity: Friedman-Nemenyi post-hoc
analysis (best viewed in color). “NS” means “there is no
significantly differences”.

size, and the mutation rate (note that the crossover rate is set
to (1-mutation rate)). As shown in the previous subsection,
G-MEDA converges after 10 iterations which is a reliable
setting for the maximum number of iterations. In this section,
we further examine the other two evolutionary parameters:
mutation rate and population size. The mutation rate varies
in {0.2, 0.4, 0.6, 0.8}. The population size varies in {20, 50,
100, 200}. The examination is performed on three represen-
tative domain adaptation cases: A → C (Office+Caltecth10),
A → D(31) (Office31), and B → D (Amazon Review). The
comparisons are performed by the Friedman significance test
with a Nemenyi post-hoc analysis and a significance level
being set to 0.05.

Fig. 7(a) shows the comparisons between different mutation
rates on three representative domain adaptation cases. It can
be seen that the four settings of the mutation rate are not
significantly different in terms of the obtained accuracies.
Thus, the algorithm is not sensitive to the mutation rate.
Among the four values, we find that setting the mutation rate to
0.2 results in stably high classification accuracies. Therefore,
we recommend setting the mutation rate to 0.2.

Fig. 7(b) shows the comparisons between four different
population sizes. The figure shows that there are no significant
differences between the four settings of the population sizes.
Further analysis of the accuracy (not shown here due to the
limited space) reveals the final accuracies are more stable when
the population size is set to 200 for domain adaptation cases
with large numbers of features like A→ D(31) (Office31) and

13

B → D (Amazon Review). For domain adaptation cases with
smaller numbers of features like A→ C (Office+Caltecth10),
setting the population size to 100 is sufficient to have stable
accuracies. However, if it is important to have a short compu-
tation time, one can consider setting the population size to 20
or 50 since the four settings have no significant differences.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel transfer classifier induction
approach which hybrids the evolutionary and gradient search
to effectively and efficiently evolve a transfer classifier. Firstly,
a discrete representation for building an adaptive classifier is
proposed to directly learn the target labels. The proposed rep-
resentation has much smaller dimensionality than the matrix
representation which has been widely used by existing transfer
classifier adaptation algorithms. The proposed representation
is also suitable to genetic operators that have potential global
search ability, while existing transfer classifier adaptation
algorithms rely on gradient descent with a risk of being trapped
at local optima. Along with the novel representation, a novel
fitness function is also proposed. The fitness function aims
at preserving the manifold consistency which can reduce the
conditional distribution difference partially. A gradient-based
local search is proposed as an inner step to further reduce
the distribution difference. The experimental results on 30
domain adaptation cases show that the proposed algorithms
achieve better classification performance than the benchmark
traditional and deep domain adaptation methods. Although the
proposed algorithm is a population-based domain adaptation
method, it is still efficient thanks to its simple fitness function.
Besides, it is shown that the proposed hybridization approach
can control the manifold consistency and the distribution
difference better than combining them in a single fitness
function using a regularization parameter.

Although the proposed algorithm achieves good results,
there is still room for improvement. The results show that
the feature learning step (GFK [32] in this work) has a
large impact on classification performance. If the learned
features cannot separate source instances from different classes
clearly, the proposed algorithm will have poor classification
performance on the target domain. Also, the feature learning
step is separated from the classifier learning step, which may
still limit the interaction between the learned features and the
classifier. Potential future work is to integrate the two steps as
a single learning step. Such integration would require a new
representation that needs to be designed carefully to avoid
a large and complex search space. In addition, this work
still requires parameters to linearly combine the objectives
of unsupervised domain adaptation into a single objective.
Such parameters can be removed by considering unsupervised
domain adaptation as a multi-objective problem where its ob-
jectives are treated separately. In the future, we will investigate
employing evolutionary multi-objective optimization methods
to achieve unsupervised domain adaptation.

REFERENCES

[1] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in Neural Information
Processing Systems, 2015, pp. 649–657.

[2] N. Coudray, P. S. Ocampo, T. Sakellaropoulos, N. Narula, M. Snuderl,
D. Fenyö, A. L. Moreira, N. Razavian, and A. Tsirigos, “Classification
and mutation prediction from non–small cell lung cancer histopathology
images using deep learning,” Nature medicine, vol. 24, no. 10, p. 1559,
2018.

[3] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, p. 115, 2017.

[4] S. J. Pan, Q. Yang et al., “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp.
1345–1359, 2010.

[5] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learn-
ing,” in Proceedings of the 24th International Conference on Machine
learning. ACM, 2007, pp. 193–200.

[6] F. M. Cariucci, L. Porzi, B. Caputo, E. Ricci, and S. R. Bulò, “Autodial:
Automatic domain alignment layers,” in IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 5077–5085.

[7] C. Chen, Z. Chen, B. Jiang, and X. Jin, “Joint domain alignment and
discriminative feature learning for unsupervised deep domain adapta-
tion,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 3296–3303.

[8] M. Long, J. Wang, G. Ding, S. J. Pan, and S. Y. Philip, “Adaptation
regularization: A general framework for transfer learning,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 26, no. 5, pp. 1076–
1089, 2014.

[9] J. Wang, W. Feng, Y. Chen, H. Yu, M. Huang, and P. S. Yu, “Visual
domain adaptation with manifold embedded distribution alignment,” in
ACM Multimedia Conference on Multimedia Conference, 2018, pp. 402–
410.

[10] B. H. Nguyen, B. Xue, M. Zhang, and P. Andreae, “Population-based
ensemble classifier induction for domain adaptation,” in Proceedings of
the Genetic and Evolutionary Computation Conference. ACM, 2019,
pp. 437–445.

[11] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in Proceedings of the 32Nd International Conference
on International Conference on Machine Learning - Volume 37, ser.
ICML’15. JMLR.org, 2015, pp. 1180–1189.

[12] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,”
Neurocomputing, vol. 312, pp. 135–153, 2018.

[13] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan,
“Domain separation networks,” in Advances in Neural Information
Processing Systems, 2016, pp. 343–351.

[14] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li, “Deep
reconstruction-classification networks for unsupervised domain adapta-
tion,” in European Conference on Computer Vision. Springer, 2016,
pp. 597–613.

[15] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Unsupervised domain
adaptation with residual transfer networks,” in Advances in Neural
Information Processing Systems, 2016, pp. 136–144.

[16] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable
features with deep adaptation networks,” in Proceedings of the Interna-
tional Conference on International Conference on Machine Learning -
Volume 37, ser. ICML’15, 2015, pp. 97–105.

[17] C. Chao, C. Zhihong, J. Boyuan, and J. Xinyu, “Joint domain align-
ment and discriminative feature learning for unsupervised deep domain
adaptation,” in AAAI Conference on Artificial Intelligence, 2019.

[18] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep
domain adaptation,” in European Conference on Computer Vision.
Springer, 2016, pp. 443–450.

[19] X. Peng and K. Saenko, “Synthetic to real adaptation with generative
correlation alignment networks,” in IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), 2018, pp. 1982–1991.

[20] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 2096–2030, 2016.

[21] W. Zhang, W. Ouyang, W. Li, and D. Xu, “Collaborative and adversarial
network for unsupervised domain adaptation,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

[22] B. Gong, K. Grauman, and F. Sha, “Connecting the dots with landmarks:
Discriminatively learning domain-invariant features for unsupervised
domain adaptation,” in International Conference on Machine Learning,
2013, pp. 222–230.

[23] Q. Sun, R. Chattopadhyay, S. Panchanathan, and J. Ye, “A two-stage
weighting framework for multi-source domain adaptation,” in Advances
in Neural Information Processing Systems, 2011, pp. 505–513.

14

[24] Y. Xu, S. J. Pan, H. Xiong, Q. Wu, R. Luo, H. Min, and H. Song, “A
unified framework for metric transfer learning.” IEEE Transactions on
Knowledge and Data Engineering, vol. 29, no. 6, pp. 1158–1171, 2017.

[25] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Transactions on Neural Networks,
vol. 22, no. 2, pp. 199–210, 2011.

[26] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature
learning with joint distribution adaptation,” in Proceedings of the IEEE
International Conference on Computer Vision, 2013, pp. 2200–2207.

[27] S. Si, D. Tao, and B. Geng, “Bregman divergence-based regularization
for transfer subspace learning,” IEEE Transactions on Knowledge and
Data Engineering, vol. 22, no. 7, p. 929, 2010.

[28] K. Yan, L. Kou, and D. Zhang, “Learning domain-invariant subspace
using domain features and independence maximization,” IEEE Transac-
tions on Cybernetics, vol. 48, no. 1, pp. 288–299, 2017.

[29] S. Wang, L. Zhang, and W. Zuo, “Class-specific reconstruction transfer
learning via sparse low-rank constraint,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 949–957.

[30] J. Zhang, W. Li, and P. Ogunbona, “Joint geometrical and statistical
alignment for visual domain adaptation,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[31] R. Gopalan, R. Li, and R. Chellappa, “Domain adaptation for object
recognition: An unsupervised approach,” in Proceedings of the IEEE
International Conference on Computer Vision, 2011, pp. 999–1006.

[32] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2012, pp. 2066–2073.

[33] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised
visual domain adaptation using subspace alignment,” in Proceedings of
the IEEE International Conference on Computer Vision, 2013, pp. 2960–
2967.

[34] B. Sun and K. Saenko, “Subspace distribution alignment for unsuper-
vised domain adaptation.” in BMVC, 2015, pp. 24–1.

[35] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of rep-
resentations for domain adaptation,” in Advances in Neural Information
Processing Systems, 2007, pp. 137–144.

[36] Y. Mansour, M. Mohri, and A. Rostamizadeh, “Domain adaptation:
Learning bounds and algorithms,” CoRR, vol. abs/0902.3430, 2009.

[37] V. Vapnik, The nature of statistical learning theory. Springer science
& business media, 2013.

[38] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized represen-
ter theorem,” in International Conference on Computational Learning
Theory. Springer, 2001, pp. 416–426.

[39] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola,
“A kernel method for the two-sample-problem,” in Advances in Neural
Information Processing Systems, 2007, pp. 513–520.

[40] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
Journal of Machine Learning Research, vol. 7, no. Nov, pp. 2399–2434,
2006.

[41] M. Chen, Z. Xu, K. Q. Weinberger, and F. Sha, “Marginalized denois-
ing autoencoders for domain adaptation,” in Proceedings of the 29th
International Conference on Machine Learning, ser. ICML’12. USA:
Omnipress, 2012, pp. 1627–1634.

[42] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

[43] B. Sun and K. Saenko, “Subspace distribution alignment for unsuper-
vised domain adaptation.” in BMVC, vol. 4, 2015, pp. 24–1.

[44] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information Processing and Management, vol. 24, no. 5,
pp. 513 – 523, 1988.

[45] J. Zhuo, S. Wang, W. Zhang, and Q. Huang, “Deep unsupervised
convolutional domain adaptation,” in Proceedings of the 25th ACM
International Conference on Multimedia, ser. MM ’17. New York,
NY, USA: ACM, 2017, pp. 261–269.

[46] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, “How many trees in
a random forest?” in International Workshop on Machine Learning and
Data Mining in Pattern Recognition. Springer, 2012, pp. 154–168.

[47] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer joint
matching for unsupervised domain adaptation,” in IEEE Conference on
Computer Vision and Pattern Recognition, June 2014, pp. 1410–1417.

[48] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

Bach Hoai Nguyen (M’14) received his B.Sc. with
First Class Honours and the Ph.D. in computer
science at Victoria University of Wellington, New
Zealand in 2015 and 2018, respectively. He is cur-
rently a Postdoctoral Research Fellow in the School
of Engineering and Computer Science at Victoria
University of Wellington. His research interests are
in evolutionary computation, feature selection, fea-
ture construction, and transfer learning.

He is currently the Chair of the IEEE Task Force
on Evolutionary Feature Selection and Construction,

and a member of the IEEE Computational Intelligence Society.

Bing Xue (M’10) received the B.Sc. degree from
the Henan University of Economics and Law,
Zhengzhou, China, in 2007, the M.Sc. degree in
management from Shenzhen University, Shenzhen,
China, in 2010, and the Ph.D. degree in computer
science in 2014 at Victoria University of Welling-
ton, New Zealand. She is currently an Associate
Professor in School of Engineering and Computer
Science at Victoria University of Wellington. She has
over 100 papers published in fully refereed interna-
tional journals and conferences. Her research focuses

mainly on evolutionary computation, feature selection, feature construction,
image analysis, and transfer learning.

She is currently the Chair of the IEEE Computational Intelligence Society
(CIS) Data Mining and Big Data Analytics Technical Committee, Vice-Chair
of the IEEE CIS Task Force on Transfer Learning & Transfer Optimization,
and Vice-Chair of the IEEE CIS Task Force on Evolutionary Deep Learning
and Applications.

Peter Andreae received the B.E. (Honours) degree
in electrical engineering from the University of Can-
terbury, Christchurch, New Zealand, in 1977, and
the Ph.D. degree in artificial intelligence from the
Massachusetts Institute of Technology, Cambridge,
USA in 1985. Since 1985, he has been teaching com-
puter science with the School of Engineering and
Computer Science, Victoria University of Welling-
ton, New Zealand.

He is currently an Associate Professor of Com-
puter Science, Associate Dean (Students) and As-

sociate Dean (Academic Development) of the Faculty of Engineering. His
research interests include making agents that can learn behavior from ex-
perience, but he has also worked on a wide range of topics ranging from
reconstructing vasculature from X-rays, clustering algorithms, analysis of
microarray data, programming by demonstration, and software reuse.

Mengjie Zhang (M’04-SM’10-F’19) received the
B.E. and M.E. degrees from Artificial Intelligence
Research Center, Agricultural University of Hebei,
Hebei, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively. He
is currently Professor of Computer Science, Head
of the Evolutionary Computation Research Group,
and the Associate Dean (Research and Innovation)
in the Faculty of Engineering at Victoria University
of Wellington. His current research interests include

evolutionary computation with application areas of image analysis, multi-
objective optimization, feature selection and reduction, job shop scheduling,
and transfer learning. He has published over 500 research papers in refereed
international journals and conferences. Prof. Zhang is a Fellow of Royal
Society of New Zealand and has been a Panel member of the Marsden Fund
(New Zealand Government Funding), a Fellow of IEEE, and a member of
ACM.

He was the Chair of the IEEE CIS Intelligent Systems and Applications
Technical Committee, and Chair of the IEEE CIS Emergent Technologies
Technical Committee and the Evolutionary Computation Technical Commit-
tee, and a member of the IEEE CIS Award Committee. He is a Vice-Chair of
the IEEE CIS Task Force on Evolutionary Feature Selection and Construction,
a Vice-Chair of the Task Force on Evolutionary Computer Vision and Image
Processing, and the founding Chair of the IEEE Computational Intelligence
Chapter in New Zealand. He is also a committee member of the IEEE NZ
Central Section.

