
Evolutionary Sparsity Regularisation-based
Feature Selection for Binary Classification

Bach Hoai Nguyen Hoai.Bach.Nguyen@ecs.vuw.ac.nz

Bing Xue Bing.Xue@ecs.vuw.ac.nz

Mengjie Zhang Mengjie.Zhang@ecs.vuw.ac.nz
School of Engineering and Computer Science, Faculty of Engineering, Victoria Univer-
sity of Wellington, Wellington, New Zealand

Abstract
In classification, feature selection is an essential pre-processing step that selects a small
subset of features to improve classification performance. Existing feature selection ap-
proaches can be divided into three main approaches: wrapper approaches, filter ap-
proaches, and embedded approaches. In comparison with two other approaches, em-
bedded approaches usually have better trade-off between classification performance
and computation time. One of the most well-known embedded approaches is spar-
sity regularisation-based feature selection which generates sparse solutions for feature
selection. Despite its good performance, sparsity regularisation-based feature selec-
tion outputs only a feature ranking which requires the number of selected features to
be predefined. More importantly, the ranking mechanism introduces a risk of ignor-
ing feature interactions which leads to the fact that many top-ranked but redundant
features are selected. This work addresses the above problems by proposing a new
representation that considers the interactions between features and can automatically
determine an appropriate number of selected features. The proposed representation
is used in a differential evolutionary (DE) algorithm to optimise the feature subset.
In addition, a novel initialisation mechanism is proposed to let DE consider various
numbers of selected features at the beginning. The proposed algorithm is examined
on both synthetic and real-world datasets. The results on the synthetic dataset show
that the proposed algorithm can select complementary features while existing sparsity
regularisation-based feature selection algorithms are at risk of selecting redundant fea-
tures. The results on real-world datasets show that the proposed algorithm achieves
better classification performance than well-known wrapper, filter, and embedded ap-
proaches. The algorithm is also as efficient as filter feature selection approaches.

Keywords
Sparse regularisation, feature selection, classification, differential evolution

1 Introduction

The goal of classification is to determine the class of an instance based on its features.
The classification performance relies on the quality of the features. In many modern
classification tasks, there are a large number of features available. Unfortunately, with
large feature sets, many features are irrelevant to the class label. Using such features
may deteriorate the classification performance significantly due to their misleading in-
formation (Zhao et al., 2009). Besides irrelevant features, large feature sets may contain
redundant features providing the same information as other features. Including re-
dundant features usually does not improve classification performance while causing a

c©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

H. B. Nguyen, B. Xue, and M. Zhang

longer training time. Additionally, since the number of possible instances in the data
space increases exponentially with respect to the number of features, a large number of
features causes the available data to be sparse. Therefore, it requires a huge amount of
data to obtain an accurate classifier, which is known as the “curse of dimensionality”
(Keogh and Mueen, 2017). To improve the feature quality, feature selection removes the
irrelevant and redundant features, which reduces the number of features and improves
the classification performance (Guyon and Elisseeff, 2003).

A feature selection algorithm typically has two main components: subset discov-
ery and subset evaluation. The first component, subset discovery, is responsible for
generating promising feature subsets. The second component, subset evaluation, is
responsible for evaluating the goodness of the feature subsets generated by the sub-
set discovery. It is essential to have an efficient and effective subset discovery method
since the total number of possible subsets increases exponentially with respect to the
number of features. By considering the feedback from the subset evaluation, the subset
discovery is expected to generate more promising feature subsets and search the space
more efficiently. Besides the large search space, feature selection is challenging due to
the complex interactions between features. For example, individually relevant features
may provide the same information about the class label, so selecting them together re-
sults in redundancy. On the other hand, combining weakly relevant features may form
a significantly relevant feature set. Hence, to achieve a reliable selection performance,
the two components need to consider feature interactions.

Based on the subset evaluation, feature selection methods can be divided into three
main categories: wrapper approaches, filter approaches, and embedded approaches (Li
et al., 2018; Dash and Liu, 1997; Tang et al., 2014). Wrapper approaches use a specific
classification algorithm to evaluate feature subsets, thus they achieve high classification
performance since the selected features are tailored to the wrapped classifier. However,
wrappers are computationally expensive due to having to train classifiers in each eval-
uation process. On the other hand, filter approaches evaluate feature subsets based on
the intrinsic characteristics of a dataset. Since filters do not involve any classification
process in their evaluations, they are usually more efficient than wrappers. However,
filters usually do not achieve as good classification performance as wrappers (Li et al.,
2018). Embedded approaches perform feature selection during the process of training
a classifier. For example, building a decision tree can be considered an embedded fea-
ture selection approach because it selects features at its internal nodes. Embedded ap-
proaches generally provide a better trade-off between selection performance and com-
putation time than the other two approaches (Li et al., 2018). Therefore, this paper
focuses on developing an embedded approach for feature selection.

Among existing embedded feature selection approaches, sparsity regularisation-
based methods have gained much attention from the feature selection community be-
cause of their good performance and interpretability (Liu et al., 2009; Nie et al., 2010;
Xiang et al., 2012). The main idea of sparsity regularisation-based methods is to find
an optimal weight vector ω for the features such that the classification loss and the vec-
tor’s regularisation are minimised. The role of regularisation is to balance between the
bias and the variance of the learned model (Bishop, 2006). Since the variance is con-
trolled by the regularisation, sparsity regularisation-based methods can partially avoid
overfitting. It has been shown that by using `p-norm (0 ≤ p ≤ 1) as the regularisation
function, the learned weight vector becomes sparse where many vector elements are
very small, in some cases, exactly 0 (Keogh and Mueen, 2017; Peng and Fan, 2016). This
property is suitable for feature selection since each vector element can be considered a

2 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

feature coefficient, and coefficients can be used to select features (Li et al., 2018).
Although existing sparsity regularisation-based methods achieve good feature se-

lection performance, they have two main limitations. Firstly, the values in the sparse
vectorω constitute a ranking of features but do not specify how many features to select,
thus the number of selected features needs to be predefined. However, this number
is problem dependent and usually not known in advance. More importantly, due to
the ranking mechanism, some feature interactions might be ignored. For example, se-
lecting two low-ranked features with small coefficients might significantly improve the
classification performance if they are complementary and provide information together
that is not available from any individual features.

Evolutionary computation (EC) has been widely applied to feature selection be-
cause of its potential global search ability (Xue et al., 2016). As one of feature subset
selection approaches, EC-based feature selection can evaluate a whole feature subset
which considers feature interactions. Among EC methods, differential evolution (DE)
has been shown to achieve better performance than other EC methods in many areas
(Das and Suganthan, 2010). Also compared with other EC methods, DE is simpler to
understand and has fewer parameters to be tuned, which makes it easier to be used
by experts from a wide range of fields. Therefore, this work utilises DE to address the
above two limitations of sparsity regularisation-based feature selection.

1.1 Goal

The overall goal of this paper is to develop an embedded feature selection method
utilising both sparsity regularisation and DE to efficiently select small feature subsets,
which achieve similar or better classification performance than using all features on
binary classification problems. To achieve this goal, we propose a hybrid representa-
tion with two components, which build feature coefficients and feature subsets, respec-
tively. The first component ensures that the selected features are capable of building
a reliable classifier; the second component allows DE to automatically determine the
number of selected features and to consider feature interactions. The fitness function is
similar to the objective function in support vector machine (SVM) where Hinge loss is
used to measure the classification loss of the selected features. Thus the proposed algo-
rithm can be considered an SVM-embedded feature selection algorithm. We first focus
on binary classification problems since SVM is primarily for binary classification. The
proposed algorithm is first evaluated on a synthetic dataset to analyse its capability to
detect feature interactions. We then examine our proposed algorithm on 14 real-world
datasets of varying difficulties. Specifically, we will investigate:

• whether the proposed algorithm selects a smaller number of features while main-
taining or even improving the classification performance over using all features,

• whether the proposed algorithm can select better feature subsets with shorter com-
putational time than wrapper-based feature selection using SVM as the wrapped
classification algorithm,

• whether the proposed algorithm can select more complementary features, hence
achieving better classification performance than three state-of-the-art sparsity
regularisation-based embedded approaches: RFS (Nie et al., 2010), GFS (Peng and
Fan, 2017a), and OEC (Bonyadi and Reutens, 2019), and

• whether the proposed algorithm can achieve better performance than three well-
known filter feature selection algorithms: mRMR (Peng et al., 2005), CFS (Hall and

Evolutionary Computation Volume x, Number x 3

H. B. Nguyen, B. Xue, and M. Zhang

Smith, 1999), and reliefF (Robnik-Šikonja and Kononenko, 2003).

1.2 Notations in this paper

We summarise the notations used in this paper. Let X ∈ Rm×n be a feature data con-
tainingm instances and n features. We can expressX = (x1,x2, . . . ,xj , . . . ,xm) where
xj is the jth sample. Alternatively, we also express X = [X1;X2; . . . ;Xi; . . . ;Xn]
where Xi is all values of the ith feature in the dataset. The label vector is y =
(y1, y2, . . . , ym) where yj ∈ {−1,+1}, j ∈ {1, 2, . . . ,m} (binary classification). In the
paper, vectors are denoted by bold lower-case letters and matrices are denoted by bold
capital letters. The expression "< a, b >" means horizontally appending the vector b to
the vector a to form a new vector.

2 Background

This section firstly gives an overview of feature selection and related work on feature
selection. After that, sparsity regularisation-based feature selection, the main focus of
this paper, is described in more details. The final subsection provides a brief description
of JADE (Zhang and Sanderson, 2009), an adaptive DE algorithm, which is used as the
optimisation technique of the proposed algorithm

2.1 Feature selection for classification

The main goal of feature selection is to select a small feature subset from n original
features such that the selected features can maintain or improve the classification per-
formance than using all features. Since the total number of possible feature subsets
is 2n, the search space of feature selection increases exponentially with the number of
features. Feature selection can be roughly divided into three main categories: filter
approaches, wrapped approaches, and embedded approaches. The main difference be-
tween the three categories is the way they evaluate the goodness of a feature subset
candidate.

Filter approaches evaluate feature subsets based on the intrinsic characteristics of
the dataset. The main idea is to have a measure which can assess the redundancy be-
tween features, and/or the relevance between features and the class label. Correlation
(CFS) (Hall and Smith, 1999), distance (reliefF) (Robnik-Šikonja and Kononenko, 2003),
and information gain (mRMR) (Peng et al., 2005) are three well-known filter measures,
which are used as representatives of filter approaches in this work.

Wrapper approaches rely on a classification algorithm to evaluate feature subsets.
Some common wrapped classification algorithms are K-nearest neighbours (KNN)
(Wang et al., 2015; Gu et al., 2018; Tran et al., 2018; Nguyen et al., 2019), Decision Tree
(DT) (Zhang et al., 2014b), and Support Vector Machine (SVM) (Chen and Chen, 2015;
Wei et al., 2017; Tuba et al., 2019). Although wrapper approaches usually achieve good
classification performance with the wrapped classification algorithm, they are compu-
tationally intensive since they repeatedly train the wrapped classification algorithm.

Embedded feature selection is in the middle of filters an wrappers. Embedded ap-
proaches usually achieve better classification performance than filters and have a faster
selection process than wrappers. The main idea is to perform feature selection during
the process of building a classifier which combines the advantage of both filter and
wrapper approaches. A good representative of embedded feature selection is sparsity
based feature selection (Kim and Kim, 2004; Yan and Yang, 2015) which has gained
considerable attention recently due to its good performance (Li et al., 2018). Thus, this
work focuses on developing a novel sparsity based feature selection algorithm. The

4 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

following subsection discusses sparsity based feature selection in more details.

2.2 Sparsity based feature selection

The main goal of sparsity regularisation-based feature selection is to learn a sparse
solution consisting of feature coefficients which minimises the fitting error. The sparse
solution can be achieved by a sparse regularisation term which forces many feature
coefficients to be close to 0. Given a feature data, X ∈ Rm×n where m is the number
of samples and n is the number of features, a label vector y = {y1, y2, . . . , ym}, sparsity
based feature selection can be written as the following optimisation problem:

min
H

loss(H;X,y) + α× reg(H) (1)

whereH represents the solution, loss(·) is a loss function, reg(·) is a regularisation term
of H, and α is a regularisation parameter. The loss function can be least squared loss,
Hinge loss, or logistic loss.

For binary classification problems, H is represented by a weight vector w ∈ Rn,
and the regularisation is an `p-norm where 0 ≤ p ≤ 1 to force a sparse vectorw. Hence,
the objective function for feature selection is:

min
w

loss(w;X,y) + α||w||p (2)

where ||w||p = (
∑n

i=1 |w
p
i |)1/p. If p = 0, the l0-norm function counts the number of

nonzero entries (features) in w. However, l0-norm leads to an integer programming
problem which is difficult to solve. It is shown that l1-norm has a similar effect as l0-
norm since it forces many entries to be much smaller, sometimes close to 0 (Tibshirani,
1996). Thus, l1 norm has been widely applied to achieve feature selection (Xu et al.,
2014; Wei et al., 2016; Hara and Maehara, 2017). The features can be ranked by the
absolute values of their coefficients in w.

For multi-class classification problems, H is represented by a weight matrix W ∈
Rn×c where c is the number of classes, and the regularisation is an `p,q-norm. Hence,
the objective function for feature selection is:

min
W

loss(W ;X,y) + α||W ||p,q (3)

where ||W ||p,q = (
∑c

k=1(
∑n

i=1W
p
i,k)

q/p)1/q . Most existing works set p = 2 and vary
q in the range [0, 1] to obtain a sparse matrix W (Peng and Fan, 2016; Zhang et al.,
2014a). The features can be ranked according to the value of ||W i||22. An early work
RFS (Robust Feature Selection) (Nie et al., 2010) is proposed to use `2,1-norm for both
the loss function and the regularisation term, which is more robust to noise. Thus,
RFS achieves a good classification performance. Later, Peng and Fan (Peng and Fan,
2017b) show that it is not necessary to use the same norm for both loss function and
regularisation term. In their proposed algorithm (GFS), `2,r-norm (0 < r ≤ 2) is used
for the loss function and `2,q-norm (0 < q < 1) is used for the regularisation term. The
results show that the norm flexibility could improve the feature selection performance.

The main drawback of existing sparsity regularisation-based feature selection ap-
proaches is their ranking mechanisms where features are ranked according to their co-
efficients. In many cases, top-ranked features might be redundant features and it is not
necessary to select all of them together. It is also possible that the combination of low-
ranked features might form a complementary feature set which is significantly relevant

Evolutionary Computation Volume x, Number x 5

H. B. Nguyen, B. Xue, and M. Zhang

to the class label. Furthermore, most sparsity regularisation-based feature selection al-
gorithms are gradient-based, so they can be trapped at local optima when the optimi-
sation problem is non-convex, for example when p and q are smaller than 1. Thus, it is
necessary to develop a global sparsity regularisation-based feature selection algorithm
which considers feature interactions. One option is to use EC as an optimisation ap-
proach to enhance the algorithm’s global search ability. In fact, many EC techniques
including genetic algorithms (GA), particle swarm optimisation (PSO), and differen-
tial evolution (DE) have been widely applied to achieve features selection (Xue et al.,
2016). However, most of them are either filter or wrapper approaches which either
achieve low classification performance or have an expensive computation cost. This
work proposes an embedded feature selection algorithm which uses EC, more specifi-
cally DE, to achieve sparsity regularisation-based feature selection. Since standard EC
techniques usually do not work well on optimisation problems with a huge number of
decision variables, we first focus only on binary classification problems which have a
relatively smaller number of feature coefficients to optimise (Cheng et al., 2016). The
following subsection briefly describes DE.

2.3 Differential evolution

Differential evolution (DE) is an evolutionary algorithm proposed by Storn and
Price (Storn and Price, 1997). DE maintains a population P of NP individuals,
{z1, z2, . . . , zNP } where each individual encodes a candidate solution. In DE, each indi-
vidual zi is represented by a numeric vector {zi1, zi2, . . . , zin} where i is the individual
index (1 ≤ i ≤ NP), n is the problem’s dimension, and zmin

j ≤ zij ≤ zmax
j (1 ≤ j ≤ n).

Typically, DE starts with a random population and its evolutionary process is a loop of
three operations: mutation, crossover, and selection which are described as follows:

• Mutation: for each individual zi, this operation generates a mutant vector vi based
on some other solutions randomly selected from the current population.

• Crossover: this operation builds a trial vector ui by applying a binomial crossover
between zi and vi. Each entry of ui can be obtained by the following formula:

uij =

{
vij , if rand(0,1) ≤ CRi or j = jrand,

zij , otherwise

where rand(0,1) is a random number between 0 and 1, jrand = randint(1, n) is
an integer randomly selected between 1 and n, an CRi ∈ [0, 1] is used to roughly
control the average fraction of vector entries that the trial vector u can inherit from
the mutant vector vi.

• Selection: ui will replace zi if it has a better fitness value than zi. Otherwise, zi is
not changed. If zi is replaced, it is called a successful update.

JADE is an enhanced version of DE where a new mutation scheme called
"DE/current-to-pbest" is implemented and its parameters are adaptively controlled.
JADE also records a set of inferior solutions, called A, which are solutions being re-
placed by the selection operation. The "DE/current-to-pbest" mutation generates the
mutant vector ui for the individual zi by the following equation:

ui = zi + Fi × (zpbest − zi) + Fi × (zr1 − z̃r2) (4)

6 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

where zr1, is selected from P, zpbest are selected from the top p% solutions of P, and z̃r2
is selected from the union P ∪ A. Such mutation mechanism is designed to balance
between the convergence rate and the diversity of the population.

For the ith individual, DE has two main parameters CRi and Fi which are adap-
tively generated by two normal distributionsN (µCR, 0.1) andN (µF , 0.1), respectively.
Both µCR and µF are initialised to 0.5, and updated at the end of each generation as

µCR = (1− c)× µCR + c×meanA(SCR) (5)
µF = (1− c)× µF + c×meanL(SF) (6)

where c ∈ (0, 1) is a positive constant, SCR and SF are the sets of crossover probabili-
ties and mutation factors, respectively, which are used in all successful updates of the
current generation, meanA(·) is the standard mean, and meanL(·) is the Lehmer mean.
JADE is shown to be better than standard DE and PSO in a wide range of benchmark
functions (Zhang and Sanderson, 2009). Therefore, we use JADE as the underlying
optimisation technique in this work.

3 Proposed method

The main goal of this paper is to develop an efficient and effective sparsity
regularisation-based feature selection algorithm which can directly output a set of com-
plementary features. In the proposed algorithm (named DEEFS), JADE is used as the
search mechanism due to its potential global search ability. This is significantly dif-
ferent from existing sparsity regularisation-based feature selection algorithms which
are mainly gradient-based. However, JADE is a general optimisation algorithm, and it
needs to be tailored to work well on feature selection. There are three main issues to be
considered:

• How to represent the sparsity regularisation-based feature selection in JADE?

• How to evaluate each candidate solution?

• How to tailor an initialisation mechanism which works better than random ini-
tialisation when applying JADE to achieve sparsity regularisation-based feature
selection?

The three questions lead to three main contributions of this paper, which will be shown
in the three following subsections. The first subsection describes a new representation
that learns feature coefficients and selection decision simultaneously. The second sub-
section describes a fitness function that is similar to the objective function of SVM. The
third subsection describes a novel initialisation mechanism which lets DEEFS consider
various numbers of features at the beginning. The last subsection gives an overview of
a feature selection system using DEEFS.

3.1 Representation

A nice property of existing sparsity based feature selection algorithms is the ability
to build a classifier (hyperplane) during the process of selecting features, which does
not require an intensive computation time but ensure that the selected features are dis-
criminative. In these algorithms, the weight vectors play two important roles: feature
coefficients for the hyperplane and decision to include or exclude features. The selec-
tion decision is determined after the feature coefficients have been trained. Particularly,

Evolutionary Computation Volume x, Number x 7

H. B. Nguyen, B. Xue, and M. Zhang

the features are ranked by their coefficients and a number of top-ranked features are se-
lected. Note that the number of selected features is determined by users. We can show,
using the synthetic data (in Section V), that only selecting features with higher weights
results in redundancy. On the other hand, several features have smaller coefficients
but selecting them together can significantly improve the classification performance.
In addition, the weight vector itself cannot determine how many features should be
selected. To address the above two issues, we propose a new hybrid representation
containing two components: the weight component to evolve the classifier weights
and the decision component to decide which features to be selected. The idea of train-
ing weights while still having decision components has been used in some neural net-
work frameworks for feature selection. Balın et al. (2019) use a concrete selector layer ,
which is sampled based on concrete random variables, to select input nodes. Lemhadri
et al. (2021) use a feed-forward neural networks with additional input-to-output con-
nections. A feature can have non-zero weight in the hidden layer if the feature’s con-
nection is active. Note that the above methods still require to pre-define the number
of selected features. Oehmcke and Gieseke (2022) optimise a selection mask that can
select an arbitrary amount of features.

The proposed algorithm is inspired by SVM for binary classification, where a hy-
perplane is built to separate samples from two classes. The hyperplane is represented
by a weight vector which is optimised by optimising the weight component. Each el-
ement of the weight vector is the weight of an original feature. An additional element
is used to optimise the bias b of the hyperplane. Hence, the first component (weight
component) is a vector consisting of n + 1 elements where n is the number of original
features. The second component (decision component) is also a numeric vector with
n elements where each vector element represents a decision to include or exclude an
original feature. There are two encoding mechanisms for the second component: using
a binary value of 0 or 1 to represent the decision or using a continuous value between
0 and 1 along with a fixed threshold value θ ∈ (0, 1). Note that for continuous one, the
threshold value θ is defined before the selection process and JADE can adapt to θ to
automatically determine the number of selected features. Both encoding mechanisms
have been widely applied to feature selection. In this work, we adopt the continuous
encoding mechanism for the decision component since JADE is designed for continu-
ous optimisation. In summary, the proposed representation is a numeric vector con-
sisting of (2n+1) elements: <w, b,d> = <w1, w2, . . . , wn, b, d1, d2, . . . , dn>, where wi and
di are the weight and decision value of the ith feature (i ∈ {1, 2, , n}), b is the bias
value.

The proposed representation is essentially different from the existing representa-
tions for feature selection. Most stochastic (mainly EC-based) feature selection algo-
rithms adopt the decision component as their representations. The selected feature
subsets need to be evaluated by a dedicated fitness function which is based on either
a specific classification algorithm (wrappers) or a measure of a specific data property
(filters). Such a representation usually leads to either a heavy computational cost of
wrappers or low classification performance of filters. On the other hand, existing spar-
sity regularisation-based feature selection algorithms use the weight component as its
representation, and select only top-ranked features based on their weights. Therefore,
sparsity regularisation-based feature selection is at risk of limiting feature interactions.
In contrast, the proposed hybrid representation can not only learn the feature decision
but also learn the classification model (weight vectors). Thus, such representation en-
ables to build an evolutionary embedded feature selection approach which is expected

8 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

to select discriminative features without a need of dedicated measures as in wrappers
and filters. In comparison with sparsity regularisation-based feature selection, the pro-
posed representation considers more feature interactions since it allows to consider
various combinations of features regardless of the feature weights. Furthermore, al-
though the weight vector with `1 regularisation can help to remove irrelevant features,
it is still at risk of selecting relevant features that are also redundant. In this case, it
is expected that the decision component can remove the such relevant but redundant
features by setting their corresponding decision values to 0. Finally, the decision com-
ponent can automatically determine the number of selected features, which cannot be
done by existing sparsity regularisation-based feature selection.

3.2 Fitness function

Given an individual <w, b,d>, its fitness is calculated based on the following equation:

Fitness(w, b,d) =
m∑
j=1

h(yj ,xj ,w, b,d) + α× reg(w, b,d) (7)

where m is the number of training instances, h(yj ,xj ,w, b,d) is the loss function which
measures the difference between the desired label yj and the label of xj predicted by
the hyperplane defined by <w, b,d>, and reg(·) and α are the regularisation function
and regularisation factor, respectively.

To understand how to calculate the two functions h(·) and reg(·), we firstly show
how <w, b,d> can be used to build a classifier or a hyperplane. Firstly, based onw and
d, the final weight vector of the n original features is obtained by

ω = w · I(d) =< w1 × I(d1), w2 × I(d2), . . . , wn × I(dn) > (8)

where

I(z) =

{
1 , if z > θ

0 , otherwise
(9)

For example, given:

• w = <0.8, 0.01, 0.2, 0.3>,

• d = <0.5, 0.7, 0.1, 0.8>, and θ = 0.6

then, I(d) = <0, 1, 0, 1> indicates the 2nd and 4th features are selected. The final weight
vector is ω = <0, 0.01, 0, 0.3>. It can be seen that although the 1st feature has the largest
weight, it is still not selected due to the decision vector. The obtained final weight
vector ω can be used to predict the class label of xj by the following formula:

oj =

{
1 , if ω · xj + b > 0

−1 , otherwise
(10)

Inspired by the Hinge loss as in SVM, we propose to calculate the classification
loss as:

h(yj ,xj ,w, b,d) = max(0, 1− oj × yj) (11)

Basically, h(·) outputs 2 if the jth instance is correctly classified, otherwise it outputs 0.
Thus, h(·) represents the number of wrongly classified instances that reflects the clas-
sification error more accurate than the Hinge loss. Note that h(·) is a discrete function

Evolutionary Computation Volume x, Number x 9

H. B. Nguyen, B. Xue, and M. Zhang

that cannot be easily addressed by convex optimisation algorithms such as gradient
descents

We also adopt `1 as the regularisation function since it encourages a more sparse
weight vector. Thus, reg(w, b,d) = ‖ω‖1.

In short, the fitness value of an individual <w, b,d> can be obtained by:

Fitness(w, b,d) =

m∑
j=1

max (0, 1− oj × yj) + α‖ω‖1 (12)

where ω and oj can be obtained by Eq. (8) and Eq. (10), respectively.

3.3 Initialisation

Although the proposed representation has several advantages over existing represen-
tations for feature selection, it has a higher dimensionality which results in a larger
search space. To cope with such an issue, we propose a novel initialisation mechanism
with an expectation that a better starting point would assist JADE to explore the search
space better. Since each individual can be seen as a hyperplane in SVM, we utilise SVM
to initialise the population. In addition, the boundary values of the weight component
are also set in the initialisation phase.

Firstly, based on the population size NP , we define a set of NP selection ratios
(a fraction between the number of selected features and the total number of features):
{1/NP, 2/NP, 3/NP, . . . , NP/NP }. The initialisation goes through each ratio value, r,
and perform the following steps:

• Step 1: define the number of selected features nr based on the ratio value r by
nr = dr × ne;

• Step 2: randomly select nr features to form a feature subset Sr;

• Step 3: generate a decision vector d = <d1, d2, . . . , dn> where di =

{
1 if i ∈ Sr

0 otherwise

• Step 4: extract a training data based on the feature subset Sr;

• Step 5: train an SVM classification algorithm on the extracted training data;

• Step 6: use the weight vector and the bias value of the obtained SVM classifier to
form a weight vector <w, b> (note that weights of unselected features are set to 0);

• Step 7: add the vector <w, b,d> as a new individual to the population;

The above initialisation has two main advantages. Firstly, it allows JADE to start with
various numbers of selected features, which is expected to well cover the search space.
Secondly, for each feature subset, an SVM classifier is utilised to generate a more re-
liable weight vector instead of starting with a random vector. In addition, based
on the initial population, we set the boundary values for the weight component as
[wmin, wmax] where wmax is the largest absolute weight value of the initialised popula-
tion, and wmin = −wmax. Pseudocode of the proposed initialisation mechanism can be
seen in Algorithm 1.

10 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

Algorithm 1 : Ratio initialisation for DEEFS
Input: NP (population size), Train (training data)
Output: Pop (initial population), [wmin, wmax]

1: begin
2: Pop = ∅ ;
3: MaxWeight = −1
4: for r = {1/NP, 2/NP, . . . , NP/NP} do
5: nr = dr × ne;
6: randomly select nr features to form Sr;

7: d = <d1, d2, . . . , dn> where di =

{
1 if i ∈ Sr

0 otherwise
8: extract a training data Trainr based on Sr;
9: <w, b> = train SVM on Trainr;

10: add <w, b,d> to Pop;
11: MaxWeight = max(MaxWeight, w1, w2, . . . , wn)
12: end for
13: wmax = MaxWeight;
14: wmin = -MaxWeight
15: end

Figure 1: Overall feature selection system where DEEFS selects features based on the
training set and the selected features are examined on the test set.

Evolutionary Computation Volume x, Number x 11

H. B. Nguyen, B. Xue, and M. Zhang

Table 1: Dataset Statistics.

Source Dataset #Features #Instances

UCI

Parkinson 22 195
German 24 1000
WBCD 30 569
Sonar 60 208
Musk1 166 476
LSVT 310 126
Madelon 500 2600

Gene expression

Colon 2000 62
DLBCL 5469 77
ALLAML 7129 72
CNS 7129 60
Leukemia 7129 72
Prostate 10509 102
Ovarian 15154 253

3.4 Overall system

The overall feature selection system is shown in Fig. 1, where DEEFS is the proposed
feature selection algorithm using JADE as its search mechanism. Firstly, a dataset is
divided into a training set and a test set. Based on the training set, DEEFS outputs a
subset of features which are selected by its best candidate solution. The evolved fea-
ture subset is then used to transform both training and test sets. Finally, a classification
algorithm is trained on the transformed training set. The obtained classifier is applied
to the transformed test set to obtain a testing accuracy which is used as the goodness
of the selected features. It should be noted that the test set should never be used in
the selection process to avoid feature selection bias. This work focuses on binary clas-
sification with a relatively small number of feature coefficients to optimise which was
discussed in Section II-B.

4 Experiment design

4.1 Benchmark datasets

In this work, the proposed algorithm is examined on both synthetic datasets and real-
world datasets. For the synthetic dataset, the optimal feature subset and the feature
interactions are known, which is helpful to analyse the behaviour of the proposed algo-
rithm. Details of the synthetic dataset can be seen in Section V. The proposed algorithm
is also evaluated on 14 real-world datasets, where seven datasets are selected from UCI
repository (Lichman, 2013). The UCI datasets are selected from different real-world
areas such as health (Parkinson, WBCD), finance (German), physic/chemistry (Sonar,
Musk1). The remaining seven datasets are gene-expression datasets with thousands
of features (Han et al., 2015; Shukla et al., 2018). The selected datasets have different
numbers of features and instances, which can be seen in Table 1. More comparisons on
large-scale datasets are shown in the supplementary material.

4.2 Benchmark techniques

Firstly, we compare our proposed algorithm, DEEFS, with using all features on both
SVM with a linear kernel and KNN (K=5). We also compare DEEFS with three state-
of-the-art embedded feature selection algorithms and three well-known filter feature

12 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

selection algorithms.
The three embedded feature selection algorithms are sparsity regularisation-based

algorithms including:

• RFS (Robust Feature Selection) (Nie et al., 2010) uses `2,1-norm on both loss func-
tion and regularisation, which is robust to outliers,

• GFS (General sparsity regularisation Feature Selection) (Peng and Fan, 2017b) uses
`2,r-norm (0 < r ≤ 2) on loss function and `2,p-norm (0 < p ≤ 1) on regularisation.
It can be seen that GFS is more generalised than RFS, which is expected to boost
the model sparsity better than RFS, and

• OEC (Optimal-margin Evolutionary Classifier) (Bonyadi and Reutens, 2019) ap-
plies EC to evolve a hyperplane with a minimal classification risk. Since OEC uses
`1-norm on regularisation, it can output sparse weight vectors. Thus, OEC can be
utilised as an embedded feature selection algorithm, as claimed in (Bonyadi and
Reutens, 2019).

The three filter feature selection algorithms are:

• CFS (Hall and Smith, 1999) - a representative of correlation based methods,

• mRMR (Peng et al., 2005) - a representative of information based methods, and

• reliefF (Robnik-Šikonja and Kononenko, 2003) - a representative of distance based
methods.

We also compare our proposed algorithm with a wrapper feature selection
method, where SVM is used as the wrapped classification algorithm. To ensure a rela-
tively fair comparison, we also use JADE as the search mechanism. The representation
is exactly the same as the decision component of DEEFS, where each individual is a nu-
meric vector and the vector elements correspond to the original features. The element
values indicate whether the corresponding features are selected or not. We also use a
standard fitness function for wrapper feature selection, which can be seen as following:

Fitnessw(S) = β × Err + (1− β)× #selected features
#original features

(13)

where Err is the balanced classification error rate of the feature subset S using the
SVM classifier, β is to control the contribution between the classification error and the
selected ratio (0 ≤ β ≤ 1). Note that Eq. (13) is used in the benchmark wrapper feature
selection algorithm, while the proposed algorithm, DEEFS, uses Eq. (12).

The algorithms are examined by using 5-fold cross validation which allows ev-
ery instance has chance to be in the training set and the test set while not violating
feature selection bias. Such design is to achieve reliable and generalised comparisons,
especially on datasets with very few instances such as gene expression datasets. Par-
ticularly, each dataset is divided into 5 folds. Each algorithm selects features using
4 folds as a training set. Based on the selected features, a classification algorithm is
tested on the remaining fold (as a test set) to obtain the balanced accuracy of the se-
lected features. The final performance of each algorithm is the average accuracy of the
five obtained balance accuracies. EC-based algorithms are run 30 independent times
on each dataset. Wilcoxon rank sum test and Friedman test are used to compare the
benchmark algorithms and the proposed algorithm.

Evolutionary Computation Volume x, Number x 13

H. B. Nguyen, B. Xue, and M. Zhang

4.3 Parameter settings

The parameters of JADE are set as recommendation in its original paper (Zhang and
Sanderson, 2009). The population size and maximum number of iterations are set to
100, α (in Eq. (12)) is set to 0.01 to guide the algorithm focus more on the classification
performance. The sensitivity analysis of α will be discussed later. The regularisation
parameters of RFS and GFS are tuned using a 3-fold cross validation strategy by search-
ing a candidate set of [10-3, 10-2, 10-1, 1, 101, 102, 103]. The number of nearest neighbours
in reliefF is tuned using the same cross validation strategy by searching a candidate set
of [1, 3, 5, 7, 9]. The parameters of OEC follow its original paper (Bonyadi and Reutens,
2019): its population size is set to (4+3× log(n)) and its maximum number of iterations
is set to 150×log(n+1), where n is the number of features.

5 Results based on the synthetic data

5.1 Dataset description

To investigate whether the proposed dual-component vector can effectively remove
redundant features, we compare DEEFS with GFS —a state-of-the-art sparsity-based
feature selection approach— on a synthetic dataset generated in a similar way as GFS’s
original paper (Peng and Fan, 2017b). Firstly, we generate m samples with features
A ∈ Rm×n1 according to normal distribution N (0, 1). Secondly, we introduce redun-
dant features B ∈ Rm×n1 by adding noise ε to A where ε follows normal distribu-
tion N (0, 0.01). We then generate irrelevant features C ∈ Rm×n2 according to uni-
form distribution U(−1, 1). Thus, we obtain samples with features X = [A;B;C] ∈
Rm×(2n1+n2). After that, we generate the label yi for each sampleXi by

yi =

{
1 ifXiw

T > 0

−1 otherwise
(14)

where w = [wA;0;0] ∈ R2n1+n2 and

wAj =


0.9 if j = 0

−0.9 if j = 1

0.1× (−1)j if 2 ≤ j ≤ n1
(15)

We intentionally set large weights for the first two features, and relatively smaller
weights for the following (n1 − 2) features to examine the ability to select weakly rele-
vant but complementary features. Setting m = 600, n1 = 15, and n2 = 70, we obtain a
dataset with 600 instances and 100 features. The generated synthetic dataset has three
groups of features:

• The first group contains 15 relevant features, ranging from 0 to 14,

• The second group contains 15 relevant but redundant feature, ranging from 14 to 29.
Note that the features from second group are less relevant than features from the
first group due to additional noise.

• The third group contains 70 irrelevant features.

Thus, the first 15 features form the optimal feature subset. The dataset is split into
70% as the training set and 30% as the test set.

14 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

Table 2: Comparisons between DEEFS and GFS on the synthetic data. The average SVM accuracy
of each algorithm is beside the algorithm’s name. The three following rows show the features
selected by each algorithm. The first row is the actual selected features. The second row converts
features from the second group to the features from the first group.

GFS (86.99%)

{0, 26, 11, 1, 23, 27, 12, 15, 9, 17, 16, 5, 8, 24, 29}
↓

{0, 11, 11, 1, 8, 12, 12, 0, 9, 2, 1, 5, 8, 9, 14}

DEEFS (94.67%)

{0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, 19}
↓

{0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 13, 0, 1, 2, 4}

5.2 Results

The results on the synthetic data are shown in Table 2. As can be seen from the ta-
ble, DEEFS achieves better classification performance than GFS. However, on the syn-
thetic dataset, we are more interested in analysing which features are selected. For each
dataset, the first row shows the actual features selected by each algorithm. Note that
the features from the second group can be used interchangeably with the features from
the first group since they provide almost the same information about the class label.
Thus, in the second line, we convert the second group’s features to the correspond-
ing ones from the first group to show redundancy in the selected feature subsets. The
redundant features are underlined.

Among the top 15 features, GFS selects six redundant features, while DEEFS se-
lects only three redundant features. In addition, GFS ignores more than half of weakly
relevant features from feature 3 to the feature 14, even though they complement feature
0 and feature 1. In contrast, DEEFS still selects these weakly relevant but complemen-
tary features. Furthermore, DEEFS selects most features from the first group, while
GFS selects more than half features from the second group which is less relevant than
the first group. As a result, DEEFS achieves about 8% higher accuracy than GFS.

The results on the synthetic dataset show that DEEFS can consider the interac-
tion between features, and thus avoiding selecting redundant and irrelevant features.
In addition, DEEFS can detect weakly relevant features that complement the strongly
relevant ones to boost the classification performance.

6 Results based on the real-world datasets

In this section, DEEFS is examined on 14 real-world datasets. We first compare DEEFS
with using all features. We then further compare DEEFS with well-known and state-
of-the-art wrapper, filter, and embedded feature selection approaches.

6.1 Comparisons with using all features

The comparisons between DEEFS and using all features can be seen in Table 3, where
"Full" indicates the results of using all features. Wilcoxon signed rank test with a sig-
nificance level of 0.05 is used for the comparisons. In the table, ↑ / ↓ /◦ indicate that
DEEFS is significantly better/worse or similar to using all features.

In terms of the SVM classification algorithm, DEEFS can select features which
achieve similar or even significantly better accuracy than using all features on 11
out of the 14 datasets. The most significant improvement is on the LSVT and CNS

Evolutionary Computation Volume x, Number x 15

H. B. Nguyen, B. Xue, and M. Zhang

Table 3: Comparisons with using all features (Wilcoxon rank-sum test).

Dataset SVM Acc KNN Acc #Features

Full DEEFS Full DEEFS Full DEEFS

Parkinson 77.60 ◦ 77.50 88.75 ↓ 87.44 22 11.07
German 67.14 ↑ 67.77 61.57 ↓ 61.16 24 22.35
WBCD 95.95 ↑ 96.05 95.68 ↓ 94.92 30 15.53
Sonar 78.67 ↑ 80.80 82.65 ↑ 83.56 60 38.61
Musk1 86.09 ↓ 84.48 85.05 ↓ 82.59 166 73.59
LSVT 76.08 ↑ 79.16 78.06 ↑ 80.87 310 37.61
Madelon 55.19 ◦ 55.09 55.62 ◦ 55.75 500 465.65
Colon 78.50 ◦ 78.37 79.50 ↓ 77.64 2000 25.27
DLBCL 95.76 ↓ 92.47 86.44 ↑ 89.93 5469 26.65
ALLAML 98.00 ↓ 96.47 78.89 ↑ 96.13 7129 25.17
CNS 53.46 ↑ 56.42 61.71 ↓ 57.35 7129 39.40
Leukemia 98.00 ◦ 98.16 77.78 ↑ 97.56 7129 25.14
Prostate 90.27 ◦ 90.17 83.18 ↑ 90.72 10509 36.53
Ovarian 100.00 ◦ 100.00 90.74 ↑ 99.88 15154 20.99

W/D/L 5/6/3 - 7/1/6 - - -

datasets, where DEEFS can improve 3% accuracy over using all features. On most
of the first 7 UCI datasets (Parkinson to Madelon) with small and medium numbers
of features, DEEFS can significantly improve the classification performance while se-
lecting around 50% features, except for the German and Madelon datasets. On gene-
expression datasets, DEEFS mostly maintains the classification accuracy which can be
considered good results since SVM usually achieves very high classification perfor-
mance on such datasets. The most notable pattern is that DEEFS significantly reduces
the number of features on these datasets. For example, on Ovarian, DEEFS selects only
21 features from the 15154 original features, which means DEEFS reduces 99.9% fea-
tures while still achieving 100% accuracy as using all features.

To examine the generalisation of DEEFS, we evaluate the performance of DEEFS
using the KNN classification algorithm. Although on most of the first 7 UCI datasets,
DEEFS does not significantly improve the classification performance over using all fea-
tures, the largest difference between them is only around 2%. In contrast, on most of
the 7 gene-expression datasets, DEEFS achieves significantly better classification per-
formance. The improvement can be up to 20% as on the Leukemia dataset. It has been
known that the performance of KNN deteriorates when there is a large number of fea-
tures. Thus, the significance of DEEFS is more visible on gene-expression datasets. The
results show that although DEEFS is an embedded feature selection approach based on
SVM, its selected features are likely to maintain or improve the classification of KNN,
which shows that DEEFS has a good generalisation ability.

In general, the experimental results show that DEEFS can successfully reduce at
least 50% of the features while mostly maintaining or even improving the classifica-
tion performance over using all features. It should be noted that on the very high-
dimensional datasets such as gene-expression datasets, DEEFS is able to reduce from
90% to 99.9% features, which results in a very small number of relevant features being
selected while achieving high classification accuracy.

16 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

Table 4: Comparisons with wrappers in terms of accuracies (Friedman test).

Dataset SVM Acc KNN Acc

W0.9 W0.98 W1.0 DEEFS W0.9 W0.98 W1.0 DEEFS

Parkinson 77.39 80.85 79.18 77.50 77.56 79.84 79.23 87.44
German 61.91 65.98 65.75 67.77 60.93 62.44 61.46 61.16
WBCD 95.47 95.94 96.61 96.05 94.64 95.01 95.10 94.92
Sonar 71.73 72.64 72.17 80.80 77.74 78.67 78.65 83.56
Musk1 80.46 81.18 81.48 84.48 82.91 83.49 83.65 82.59
LSVT 79.08 80.06 79.20 79.16 77.05 77.32 77.35 80.87
Madelon 55.99 55.55 55.37 55.09 55.39 55.27 55.23 55.75
Colon 76.40 74.99 76.17 78.37 73.09 72.27 75.22 77.64
DLBCL 89.72 91.02 94.14 92.47 77.94 77.55 83.97 89.93
ALLAML 92.77 92.67 97.77 96.47 80.30 80.00 79.60 96.13
CNS 59.61 58.43 58.85 56.42 62.54 61.64 62.05 57.35
Leukemia 91.48 91.48 97.67 98.16 79.77 79.77 78.83 97.56
Prostate 89.89 90.22 91.08 90.17 84.15 84.12 84.09 90.72
Ovarian 99.78 99.80 100.0 100.0 90.85 91.26 91.11 99.88

Ranking 3.00 2.64 2.20 2.10 2.97 2.68 2.61 1.74
W/D/L 9/2/3 9/3/2 5/6/3 - 11/1/2 9/3/2 9/2/3 -

6.2 Comparisons with wrapper approaches

In this subsection, we compare DEEFS with three wrapper algorithms which use SVM
as the wrapped classifier and JADE as the search mechanism. In this work, we use
three different values of β in Eq. (13): 0.9, 0.98, and 1.0, which forms three wrapper
algorithms, named W0.9, W0.98, and W1.0. The three values are selected so we can have
more general comparisons where the wrapper algorithms pay some attention to the
number of selected features (β = 0.9) or focus only on the classification performance
(β = 1.0). The classification accuracies and numbers of selected features are shown in
Tables 4 and 5, respectively. The best classification performance for each classification
algorithm is marked in bold. A Friedman test is used to perform a statistical com-
parison between the four algorithms. The ranking of each algorithm is showed in the
“Ranking” row of Table 4. The algorithms are then pair-wise compared by a Holm
post-hoc test with a significance level of 0.05. “W/D/L” in Table 4 shows how many
times DEEFS is significantly better/similar/worse than the benchmark algorithms.

In terms of the SVM classification algorithm, among the three wrapper algorithms,
W1.0 seems to achieve the highest classification accuracy since it focuses only on im-
proving the classification performance. In comparison with W1.0, DEEFS is signifi-
cantly better on 4 datasets while achieving the same performance on 6 other datasets.
DEEFS has a slightly higher rank than W1.0 where DEEFS achieves the best classifica-
tion performance on 6 datasets. These results indicate that although DEEFS is an em-
bedded approach, it still can achieve comparative or even better results in comparison
with wrapper approaches.

The results of the KNN classification algorithm show how generalised the selected
features are. It can be seen that DEEFS completely dominates all other wrapper algo-
rithms by achieving the best classification performance on 10 out of the 14 datasets.
Overall, DEEFS is ranked as the top algorithm when KNN is used. The results suggest
that DEEFS is more generalised than the three wrapper approaches.

In terms of the number of selected features, DEEFS tends to select larger numbers

Evolutionary Computation Volume x, Number x 17

H. B. Nguyen, B. Xue, and M. Zhang

Table 5: Comparisons with wrappers in terms of numbers selected features.

Dataset W0.9 W0.98 W1.0 DEEFS

Parkinson 3.17 4.20 5.54 11.07
German 6.78 12.77 14.21 22.35
WBCD 4.83 7.06 11.73 15.53
Sonar 8.36 10.43 11.53 38.61
Musk1 32.51 42.32 44.24 73.59
LSVT 45.27 53.43 74.49 37.61
Madelon 55.72 89.13 97.66 465.65
Colon 106.28 109.14 520.57 25.27
DLBCL 146.32 146.85 1829.92 26.65
ALLAML 187.58 187.69 2514.35 25.17
CNS 826.62 843.74 1357.03 39.40
Leukemia 164.39 164.39 2581.52 25.14
Prostate 509.28 511.70 2890.29 36.53
Ovarian 381.18 387.85 5558.99 20.99

of features than the three wrapper algorithms on the 7 UCI datasets to achieve better
classification performance. It seems that DEEFS focuses more on the classification per-
formance on the UCI datasets. In contrast, on the genes expression datasets, DEEFS
significantly reduces more features than the wrapper approaches. Among the three
wrapper algorithms, W0.9 selects the smallest number of features. However, DEEFS
selects up to 20 times smaller feature subsets than W0.9 while achieving similar or bet-
ter classification performance. The results suggest that DEEFS has a better trade-off
between the number of selected features and the classification performance. The main
reason is due to its initialisation which will be further analysed later.

In general, in comparison with wrapper approaches, DEEFS can achieve compara-
tive SVM classification performance with a better trade-off between the feature subset
size and the classification performance. As an embedded approach, DEEFS also selects
more generalised features.

6.3 Comparisons with embedded approaches

In this subsection, we compare the performance of three benchmark embedded fea-
ture selection algorithms: RFS (Nie et al., 2010), GFS (Peng and Fan, 2017b), and OEC
(Bonyadi and Reutens, 2019) with DEEFS. Note that the three algorithms cannot auto-
matically determine the number of features. Thus, to ensure a relatively fair compar-
ison, we use the number of features selected by DEEFS as the predefined number of
selected features for the three benchmark algorithms. The classification performance
of the four algorithms is shown in Table 6. On the Leukemia, Prostate, and Ovarian
datasets, since RFS and GFS have not returned results after 3 weeks (including the pro-
cess of tuning parameters), we are not able to report their accuracies.

GFS extends RFS by using different norms for the loss function and the regulari-
sation function which are able to avoid outliners and further boost the model sparsity.
Thus, GFS usually achieves better performance than RFS. However, both GFS and RFS
are based on a gradient to search for the weights, which makes them easily to be stuck
at local optima. In contrast, OEC utilises covariance matrix adaptation evolution strat-
egy (CMA-ES) (Hansen et al., 2003) to evolve the weights. As a population-based opti-
misation approach, CMA-ES may assist OEC to avoid local optima, which results in a
higher rank of OEC over GFS and RFS. However, OEC selects features by picking the

18 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

Table 6: Comparisons with embedded approaches (Friedman test).

Dataset SVM Acc KNN Acc

RFS GFS OEC DEEFS RFS GFS OEC DEEFS

Parkinson 76.25 76.14 77.29 77.50 83.08 84.42 84.92 87.44
German 67.31 65.55 67.14 67.77 60.93 61.79 61.47 61.16
WBCD 94.80 95.64 96.34 96.05 94.73 95.07 95.64 94.92
Sonar 75.17 78.58 77.66 80.80 84.70 81.89 83.77 83.56
Musk1 77.96 79.44 82.83 84.48 82.31 81.58 83.57 82.59
LSVT 76.65 85.89 79.57 79.16 73.98 75.76 77.65 80.87
Madelon 54.19 55.38 55.08 55.09 57.08 57.81 57.03 55.75
Colon 75.00 70.00 70.97 78.37 74.25 70.00 66.58 77.64
DLBCL 79.92 79.02 79.34 92.47 74.62 78.03 66.73 89.93
ALLAML 81.44 89.89 75.08 96.47 75.44 90.89 66.87 96.13
CNS 56.89 54.39 53.63 56.42 60.64 42.61 53.76 57.35
Leukemia N/A N/A 74.52 98.16 N/A N/A 67.60 97.56
Prostate N/A N/A 74.15 90.17 75.36 N/A 72.51 90.72
Ovarian N/A N/A 94.08 100.0 N/A N/A 82.93 99.88

Ranking 2.46 2.18 2.03 1.18 2.20 2.10 2.20 1.56
W/D/L 10/0/1 9/0/2 8/2/1 - 8/0/3 8/0/3 6/1/4 -

top-ranked features with higher weights. Such a selection mechanism is at risk of select-
ing redundant features and ignoring complementary features. On the contrary, DEEFS
considers not only the weights of features but also the interaction between features.
Thus, DEEFS achieves the best classification performance on 10 out of the 14 datasets,
which leads to its highest rank (1.18). In terms of the KNN classification algorithm,
DEEFS also achieves the best classification performance on 8 out of the 14 datasets.
The interesting pattern is on most datasets where DEEFS achieves the best SVM per-
formance, it also achieves the best KNN performance, which shows that DEEFS selects
more generalisable features than the three benchmark algorithms.

In summary, the experimental results show that DEEFS achieves better classifica-
tion performance than the three benchmark embedded approaches due to its potential
global search ability from JADE and its consideration of feature interactions.

6.4 Comparisons with filter approaches

We also compare DEEFS with three well-known filter approaches: CFS (Hall and Smith,
1999), mRMR (Peng et al., 2005), and reliefF (Robnik-Šikonja and Kononenko, 2003),
which are representatives for correlation-based feature selection, information-based
feature selection, and distance-based feature selection, respectively. The classification
performance and the Friedman comparisons are shown in Tables 7. As can be seen
from the table, DEEFS achieves significantly better SVM accuracies than the three filter
approaches on at least 11 out of the 14 datasets. Such domination is because DEEFS
is based on SVM. To examine the generalisation of DEEFS, we compare the four al-
gorithms using the KNN classification algorithm. Table 7 shows that DEEFS achieves
the best KNN performance on 9 out of the 14 datasets. Especially, on all the 7 gene-
expression datasets, DEEFS achieves significantly better KNN accuracy than the three
filter approaches, where DEEFS’s accuracy is at least 10% higher than that of the filter
approaches.

In summary, the results show that DEEFS generates even more generalisable fea-
ture subsets than the three filter approaches. The generated feature subsets have a good

Evolutionary Computation Volume x, Number x 19

H. B. Nguyen, B. Xue, and M. Zhang

Table 7: Comparisons with filter approaches (Friedman test).

Dataset SVM Acc KNN Acc

CFS mRMR reliefF DEEFS CFS mRMR reliefF DEEFS

Parkinson 74.24 77.92 74.79 77.50 84.48 82.30 87.74 87.44
German 66.98 66.60 67.10 67.77 61.67 61.81 60.57 61.16
WBCD 95.06 96.09 94.44 96.05 94.09 94.82 92.58 94.92
Sonar 76.09 75.77 82.42 80.80 84.56 84.18 82.69 83.56
Musk1 80.83 82.96 82.30 84.48 83.19 80.00 83.08 82.59
LSVT 70.16 57.69 64.99 79.16 64.62 64.44 64.48 80.87
Madelon 55.38 54.54 55.23 55.09 58.15 57.00 56.85 55.75
Colon 86.00 75.50 70.75 78.37 64.25 67.25 69.25 77.64
DLBCL 80.68 77.20 91.67 92.47 62.27 59.02 76.67 89.93
ALLAML 68.33 80.33 77.56 96.47 61.78 60.67 77.78 96.13
CNS 64.21 44.79 51.64 56.42 54.29 50.07 46.46 57.35
Leukemia 72.44 73.22 80.67 98.16 62.67 62.78 82.67 97.56
Prostate 67.64 72.55 75.36 90.17 67.64 68.45 80.45 90.72
Ovarian 95.52 82.58 85.34 100.0 84.50 78.17 73.90 99.88

Ranking 2.80 3.10 2.63 1.47 2.54 2.00 2.80 1.65
W/D/L 11/0/3 12/0/2 11/1/2 - 10/0/4 11/0/3 11/1/2 -

performance on both SVM and KNN classification algorithms.

6.5 Computation time

Table 8 shows the computation times of DEEFS and the benchmark algorithms. Note
that W0.9 is used as a representative of the three wrapper approaches since it selects
the smallest number of features which results in its lowest computation time. As can
be seen from the table, DEEFS is usually about 50 to 100 times faster than W0.9. The
difference is due to the fact that an SVM classifier is built in each individual of DEEFS,
thus DEEFS does not need to train any SVM classifier. In contrast, W0.9 needs to train
an SVM classifier to evaluate each individual, thus W0.9 is much more time-consuming
than DEEFS.

In comparison with the three embedded approaches, DEEFS is always faster than
at least one of the embedded approach. Especially, on the 7 gene-expression with thou-
sands of features, DEEFS is always the most efficient one. The main reason is that
RFS and GFS involve many matrix operations, which are computationally intensive
when there is a large number of features. OEC does not involve any matrix operation,
thus it can output feature subsets on the last three gene-expression datasets (Leukemia,
Prostate, and Ovarian), which cannot be done by RFS and GFS within 3 weeks. How-
ever, OEC utilised CMA-ES to optimise the weight vector. CMA-ES learns dependen-
cies between the variables, which results in its O(n2) computation complexity where
n is the number of decision variables (features) (Loshchilov, 2014). Thus, OEC does
not scale well with datasets having large numbers of features. In contrast, DEEFS only
requires basic vector operators to optimise the weights. Therefore, DEEFS can be up to
600 times faster than OEC.

As expected, the three filter approaches are very efficient where reliefF is the most
efficient one. Since CFS and mRMR need to compute the pair-wise interaction between
features, they do not scale with the number of features as well as reliefF which com-
putes a weight for each individual feature. In comparison with the three filter ap-
proaches, DEEFS has a comparative computation time. Particularly, DEEFS is usually

20 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

Table 8: Computation time (in seconds).

Dataset Filter Embedded W0.9 DEEFS
CFS mRMR reliefF RFS GFS OEC

Parkinson 0.96 0.11 0.03 0.20 0.03 0.39 87.62 1.45
German 4.19 0.49 0.29 84.41 0.30 0.68 468.97 2.36
WBCD 2.34 0.57 0.18 9.82 0.12 0.54 100.96 2.40
Sonar 3.21 1.01 0.02 0.47 0.07 1.16 126.82 2.36
Musk1 38.24 11.35 0.11 10.06 1.26 8.01 904.33 7.50
LSVT 68.84 5.00 0.02 0.62 1.57 17.09 467.45 5.45
Madelon 217.11 703.36 3.06 2866.17 55.23 93.51 8450.27 117.31
Colon 102.89 10.70 0.25 42.05 269.41 1645.73 939.71 32.26
DLBCL 223.16 41.46 2.12 812.96 5696.37 14593.10 643.24 68.43
ALLAML 163.61 42.47 3.12 1903.34 12647.75 26589.32 569.70 85.03
CNS 321.94 71.75 3.11 1499.07 13194.40 25675.51 1439.78 151.03
Leukemia 196.66 54.01 3.14 N/A N/A 26627.74 545.19 88.04
Prostate 365.11 105.45 6.79 N/A N/A 54419.07 5003.51 166.47
Ovarian 4935.66 210.02 14.30 N/A N/A 125653.83 4867.88 210.81

faster than CFS. Especially, on the gene-expression datasets, DEEFS can be up to 20
times faster. DEEFS is also at most 2 times slower than mRMR.

In summary, DEEFS has been shown to be an efficient feature selection approach,
which scales well with the number of features and still selects feature subsets with high
classification accuracies.

7 Further discussions

7.1 An Analysis of Selected Features

An advantage of DEEFS is the ability to consider feature interactions which helps
DEEFS to avoid selecting redundant features. We further examine the claim by evaluat-
ing the correlation between features selected by DEEFS, RFS, and GFS. The correlation
between features is calculated by Pearson’s correlation which has been widely applied
to feature selection (Pan et al., 2021).

The comparisons between DEEFS, RFS, and GFS are showed in Fig. 2. In the
figure, each heatmap represents a correlation matrix of the selected features, i.e. the
element at the ith row and jth column is the correlation between the ith selected feature
and the jth selected feature. The brighter heatmap cells indicate stronger correlations
between selected features, i.e. more redundancy between the selected features. As can
be seen from the figure, RFS and GFS usually have brighter heatmaps than DEEFS,
which illustrates that both RFS and GFS tend to select redundant features. A typical
pattern of RFS and GFS is that their neighbouring selected features are very likely to
have a strong correlation, which can be seen on the top-left region of GFS on WBCD,
the bottom-right region of GFS on LSVT, and the middle region of RFS on LSVT (all
regions are highly bright). The main reason is that RFS and GFS rank features based
on the weight values of the features, and then top-ranked features are selected. Thus,
the neighbouring selected features usually have similar weight values and provide the
same information, which causes significant redundancy between them. The analysis
of the selected features indicates that DEEFS can determine the number of selected
features and avoid redundant features, which cannot be achieved by RFS and GFS.

Evolutionary Computation Volume x, Number x 21

H. B. Nguyen, B. Xue, and M. Zhang

0 2 4 6 8 10 12 14

0
2
4
6
8

10
12
14

DEFS

0 2 4 6 8 10 12 14

0
2
4
6
8

10
12
14

RFS

0 2 4 6 8 10 12 14

0
2
4
6
8

10
12
14

GFS

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

(a) WBCD

0 5 10 15 20 25 30

0
5

10
15
20
25
30

DEFS

0 5 10 15 20 25 30

0
5

10
15
20
25
30

RFS

0 5 10 15 20 25 30

0
5

10
15
20
25
30

GFS

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

(b) LSVT

Figure 2: Correlation between the features selected by DEEFS, RFS, and GFS. The
brighter the figure, the more strongly correlated (redundant) features.

Ratio Random

German Musk1 DLBCL Leukemia0.0

0.2

0.4

0.6

0.8

1.0

0.678 0.845 0.925 0.982

0.549
0.760 0.859 0.906

SVM accuracy

German Musk1 DLBCL Leukemia0.0

0.2

0.4

0.6

0.8

1.0 0.931

0.443

0.005
0.0040.129 0.176

0.029
0.045

Feature ratio

Figure 3: Comparison between ratio and random initialisations.

7.2 Effect of ratio initialisation

Instead of using a random initialisation, DEEFS uses a ratio initialisation to have a
better starting point. This subsection analyses the effect of the ratio initialisation. The
analysis is shown on four datasets: German, Musk1, DLBCL, and Leukemia, which are
representatives for UCI and gene-expression datasets. The patterns are similar on the
other datasets. For presentation convenience, we denote DEEFS with ratio and random
initialisations as DEEFSratio and DEEFSrnd, respectively.

Fig. 3 shows a further comparison between DEEFSratio and DEEFSrnd in terms
of the SVM accuracy and the selected feature ration. It can be seen that DEEFSratio

achieves significantly better SVM accuracies on all the four datasets. The accuracy
differences range from 7% to 13%. In terms of the feature ratio, DEEFSratio selects
a larger number of features on the UCI datasets. However, on the gene-expression
datasets, DEEFSratio selects a smaller number of features. The main reason is the num-
ber of instances. Since UCI datasets have a large number of instances, DEEFSratio

tends to select more features to help SVM separate the instances. In contrast, gene-
expression datasets have a small number of instances which are easier to be separated,
thus DEEFSratio selects only a small number of features (around 0.5%). It can be con-

22 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

0.001 0.01 0.1 1.0
0.

00
1

0.
01

0.
1

1.
0

German

p < 0.001
p < 0.01
p < 0.05
NS

0.001 0.01 0.1 1.0

0.
00

1
0.

01
0.

1
1.

0

Musk1

p < 0.001
p < 0.01
p < 0.05
NS

0.001 0.01 0.1 1.0

0.
00

1
0.

01
0.

1
1.

0
DLBCL

p < 0.001
p < 0.01
p < 0.05
NS

0.001 0.01 0.1 1.0

0.
00

1
0.

01
0.

1
1.

0

Leukemia

p < 0.001
p < 0.01
p < 0.05
NS

Figure 4: Friedman-Nemenyi test for different α values in terms of accuracy. "NS"
means there is no significant difference (best view in colour).

cluded that DEEFSratio is able to adapt to each dataset to achieve better selection per-
formance. Such characteristic is a result of the ratio initialisation which allows DEEFS
to consider various numbers of features ranging from 1 to all features. In contrast,
the random initialisation uses the threshold 0.6 to initialise, thus on average DEEFSrnd

starts with 60% of features. In addition, DEEFSratio also utilises SVM to initialise its
weight vectors, which ensures that the built-in SVM classifier is good enough to illus-
trate the goodness of the selected features. Thus, the ratio initialisation allows JADE to
focus on promising regions in the large search space of the proposed representation.

In summary, the results show that the ratio initialisation can assist DEEFS to
achieve better performance by considering more various numbers of selected features
and ensuring that the weight vectors suit the corresponding selected features.

7.3 Effect of the regularisation parameter α

To examine the effect of α in Eq. (12), DEEFS is run with 4 different α values: 0.001,
0.01, 0.1, and 1.0. The obtained accuracies are compared using the Friedman test with
Nemenyi post-hoc analysis. The significance level is set to 0.05. Fig. 4 shows the
comparisons between the results of the 4 different α values on 4 datasets: German,
Musk1, DLBCL, and Leukemia. Similar patterns are obtained on the other datasets. As
can be seen from the figure, the SVM accuracies obtained by the four α values are not
significantly different. Thus, the accuracy of DEEFS is not sensitive to the value of α,
which suggests that DEEFS can be applied to a wide range of applications.

We also compare the number of selected features obtained by different α values.
The results can be seen in Fig. 5. On most cases, the numbers of selected features are
not significantly different across different α values. However, setting α to 0.001 results
in much larger numbers of selected features than setting α to larger values such as 0.01,
0.1, and 1.0. Thus, although the number of selected features is not too sensitive to α, it
is not recommended to set α smaller than 0.01.

To further illustrate the importance of the regularisation part in the fitness function,
we compare the results of DEEFS when α is set to 0.01 and 0.0, where the value of 0.0

Evolutionary Computation Volume x, Number x 23

H. B. Nguyen, B. Xue, and M. Zhang

0.001 0.01 0.1 1.0
0.

00
1

0.
01

0.
1

1.
0

German

p < 0.001
p < 0.01
p < 0.05
NS

0.001 0.01 0.1 1.0

0.
00

1
0.

01
0.

1
1.

0

Musk1

p < 0.001
p < 0.01
p < 0.05
NS

0.001 0.01 0.1 1.0

0.
00

1
0.

01
0.

1
1.

0
DLBCL

p < 0.001
p < 0.01
p < 0.05
NS

0.001 0.01 0.1 1.0

0.
00

1
0.

01
0.

1
1.

0

Leukemia

p < 0.001
p < 0.01
p < 0.05
NS

Figure 5: Friedman-Nemenyi test for different α values in terms of the number of
selected features.

means that we remove the regularisation part in the fitness function. The comparison
is showed in Table 9. From the table, we can see that the value of 0.01 is slightly better
than the value of 0.0 in terms of the SVM and KNN classification accuracies. However,
in terms of the number of selected features, setting α to 0.01 can select up to 3 times
smaller numbers of features than setting α to 0.0, which can be seen clearly on the
last seven gene expression datasets. Based on the results, we can conclude that the
regularisation part plays a significant role in DEEFS, which can not only improve the
classification performance but also significantly reduce the number of features.

8 Conclusions and future work

The goal of this study was to develop a sparsity regularisation-based feature selection
that considered the feature interactions and could determine the number of selected
features. The goal was achieved by proposing a hybrid representation to simulta-
neously build weight vectors and decide which features to be selected. Experimen-
tal results on a synthetic dataset showed that the proposed algorithm, called DEEFS,
could select complementary features with different weight values while existing spar-
sity regularisation-based feature selection algorithms tended to select redundant fea-
tures. DEEFS was also compared with well-known and state-of-the-art wrapper, filter,
and embedded approaches. The results showed that DEEFS achieved significantly bet-
ter classification performance than the filter and embedded approaches. In comparison
with wrapper approaches, DEEFS mostly achieved better classification performance or
at least comparative performance and used significantly smaller computation times.
The feature subsets selected by DEEFS were also more generalisable than that selected
by other benchmark algorithms.

Although DEEFS is an efficient and effective feature selection algorithm, it is cur-
rently only applicable for binary classification. The main issue is a large number of
weights to be optimised for multi-class classification which is difficult for EC to adapt.
In the future, we will investigate extending DEEFS for multi-class classification. Be-
sides, the proposed representation essentially enlarges the search space. We will also

24 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

Table 9: Comparison between α = 0.01 and α = 0.0.

Dataset SVM Acc KNN Acc Number of features

α = 0 α = 0.01 α = 0 α = 0.01 α = 0 α = 0.01

Parkinson 77.55 ↑ 77.50 87.11 ◦ 87.44 11.07 11.07
German 67.72 ◦ 67.77 60.69 ↑ 61.16 22.04 22.35
WBCD 96.07 ◦ 96.05 94.74 ◦ 94.92 15.31 15.53
Sonar 81.02 ◦ 80.80 83.97 ◦ 83.56 38.89 38.61
Musk1 84.48 ◦ 84.48 82.38 ◦ 82.59 73.27 73.59
LSVT 79.13 ◦ 79.16 81.03 ◦ 80.87 39.23 37.61
Madelon 55.09 ◦ 55.09 55.72 ◦ 55.75 465.30 465.65
Colon 77.03 ↑ 78.37 79.43 ↓ 77.64 33.91 25.27
DLBCL 92.89 ◦ 92.47 87.81 ↑ 89.93 64.13 26.65
ALLAML 97.26 ↓ 96.47 96.06 ◦ 96.13 73.21 25.17
CNS 57.72 ↓ 56.42 59.28 ◦ 57.35 52.20 39.40
Leukemia 97.17 ↑ 98.16 96.17 ↑ 97.56 76.40 25.14
Prostate 90.46 ◦ 90.17 90.10 ◦ 90.72 57.69 36.53
Ovarian 100.00 ◦ 100.00 99.68 ↑ 99.88 53.65 20.99

investigate a more comprehensive representation which encodes the same information
but using a smaller number of bits. Another potential future direction is to use non-
linear kernels in DEEFS to consider more complex feature to label interactions.

References

Balın, M. F., Abid, A., and Zou, J. (2019). Concrete autoencoders: Differentiable feature
selection and reconstruction. In International conference on machine learning, pages
444–453. PMLR.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer Science+ Busi-
ness Media.

Bonyadi, M. R. and Reutens, D. C. (2019). Optimal-margin evolutionary classifier. IEEE
Transactions on Evolutionary Computation, 23(5):885–898.

Chen, G. and Chen, J. (2015). A novel wrapper method for feature selection and its
applications. Neurocomputing, 159:219–226.

Cheng, S., Liu, B., Shi, Y., Jin, Y., and Li, B. (2016). Evolutionary computation and big
data: key challenges and future directions. In International Conference on Data Mining
and Big Data, pages 3–14. Springer.

Das, S. and Suganthan, P. N. (2010). Differential evolution: A survey of the state-of-the-
art. IEEE Transactions on Evolutionary Computation, 15(1):4–31.

Dash, M. and Liu, H. (1997). Feature selection for classification. Intelligent data analysis,
1(1-4):131–156.

Gu, S., Cheng, R., and Jin, Y. (2018). Feature selection for high-dimensional classifica-
tion using a competitive swarm optimizer. Soft Computing, 22(3):811–822.

Evolutionary Computation Volume x, Number x 25

H. B. Nguyen, B. Xue, and M. Zhang

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. The
Journal of Machine Learning Research, 3:1157–1182.

Hall, M. A. and Smith, L. A. (1999). Feature selection for machine learning: comparing a
correlation-based filter approach to the wrapper. In FLAIRS conference, volume 1999,
pages 235–239.

Han, F., Yang, C., Wu, Y.-Q., Zhu, J.-S., Ling, Q.-H., Song, Y.-Q., and Huang, D.-S. (2015).
A gene selection method for microarray data based on binary PSO encoding gene-
to-class sensitivity information. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 14(1):85–96.

Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003). Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation (CMA-
ES). Evolutionary computation, 11(1):1–18.

Hara, S. and Maehara, T. (2017). Enumerate lasso solutions for feature selection. In
Thirty-First AAAI Conference on Artificial Intelligence.

Keogh, E. and Mueen, A. (2017). Curse of Dimensionality, pages 314–315. Springer US,
Boston, MA.

Kim, Y. and Kim, J. (2004). Gradient LASSO for feature selection. In Proceedings of the
Twenty-First International Conference on Machine learning, page 60. ACM.

Lemhadri, I., Ruan, F., and Tibshirani, R. (2021). Lassonet: Neural networks with fea-
ture sparsity. In International Conference on Artificial Intelligence and Statistics, pages
10–18. PMLR.

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., and Liu, H. (2018).
Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6):94.

Lichman, M. (2013). UCI machine learning repository Irvine, CA: University of Cali-
fornia, School of Information and Computer Sciences.

Liu, J., Ji, S., and Ye, J. (2009). Multi-task feature learning via efficient l 2, 1-norm
minimization. In Proceedings of the twenty-fifth conference on uncertainty in artificial
intelligence, pages 339–348. AUAI Press.

Loshchilov, I. (2014). A computationally efficient limited memory cma-es for large scale
optimization. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, pages 397–404. ACM.

Nguyen, B. H., Xue, B., Andreae, P., Ishibuchi, H., and Zhang, M. (2019). Multiple ref-
erence points based decomposition for multi-objective feature selection in classifica-
tion: Static and dynamic mechanisms. IEEE Transactions on Evolutionary Computation.

Nie, F., Huang, H., Cai, X., and Ding, C. H. (2010). Efficient and robust feature selec-
tion via joint l2, 1-norms minimization. In Advances in Neural Information Processing
Systems, pages 1813–1821.

Oehmcke, S. and Gieseke, F. (2022). Input selection for bandwidth-limited neural net-
work inference. In Proceedings of the 2022 SIAM International Conference on Data Mining
(SDM), pages 280–288. SIAM.

26 Evolutionary Computation Volume x, Number x

Evolutionary sparsity feature selection

Pan, H., You, X., Liu, S., and Zhang, D. (2021). Pearson correlation coefficient-based
pheromone refactoring mechanism for multi-colony ant colony optimization. Applied
Intelligence, 51(2):752–774.

Peng, H. and Fan, Y. (2016). Direct sparsity optimization based feature selection for
multi-class classification. In Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI’16, pages 1918–1924.

Peng, H. and Fan, Y. (2017a). A general framework for sparsity regularized feature
selection via iteratively reweighted least square minimization. In Thirty-First AAAI
Conference on Artificial Intelligence.

Peng, H. and Fan, Y. (2017b). A general framework for sparsity regularized feature
selection via iteratively reweighted least square minimization. In Thirty-First AAAI
Conference on Artificial Intelligence.

Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual information:
criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions
on Pattern Analysis & Machine Intelligence, (8):1226–1238.

Robnik-Šikonja, M. and Kononenko, I. (2003). Theoretical and empirical analysis of
relieff and rrelieff. Machine Learning, 53(1):23–69.

Shukla, A. K., Singh, P., and Vardhan, M. (2018). A two-stage gene selection method
for biomarker discovery from microarray data for cancer classification. Chemometrics
and Intelligent Laboratory Systems, 183:47–58.

Storn, R. and Price, K. (1997). Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 11(4):341–
359.

Tang, J., Alelyani, S., and Liu, H. (2014). Feature selection for classification: A review.
Data classification: Algorithms and applications, page 37.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Tran, B., Xue, B., and Zhang, M. (2018). Variable-length particle swarm optimization for
feature selection on high-dimensional classification. IEEE Transactions on Evolutionary
Computation, 23(3):473–487.

Tuba, E., Strumberger, I., Bacanin, N., Jovanovic, R., and Tuba, M. (2019). Bare
bones fireworks algorithm for feature selection and svm optimization. In 2019 IEEE
Congress on Evolutionary Computation (CEC), pages 2207–2214.

Wang, A., An, N., Chen, G., Li, L., and Alterovitz, G. (2015). Accelerating wrapper-
based feature selection with k-nearest-neighbor. Knowledge-Based Systems, 83:81–91.

Wei, J., Zhang, R., Yu, Z., Hu, R., Tang, J., Gui, C., and Yuan, Y. (2017). A bpso-svm
algorithm based on memory renewal and enhanced mutation mechanisms for feature
selection. Applied Soft Computing, 58:176–192.

Wei, X., Cao, B., and Yu, P. S. (2016). Nonlinear joint unsupervised feature selection. In
Proceedings of the 2016 SIAM International Conference on Data Mining, pages 414–422.

Evolutionary Computation Volume x, Number x 27

H. B. Nguyen, B. Xue, and M. Zhang

Xiang, S., Nie, F., Meng, G., Pan, C., and Zhang, C. (2012). Discriminative least squares
regression for multiclass classification and feature selection. IEEE Transactions on
Neural Networks and Learning Systems, 23(11):1738–1754.

Xu, Z., Huang, G., Weinberger, K. Q., and Zheng, A. X. (2014). Gradient boosted feature
selection. In Proceedings of the 20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 522–531.

Xue, B., Zhang, M., Browne, W. N., and Yao, X. (2016). A survey on evolutionary
computation approaches to feature selection. IEEE Transactions on Evolutionary Com-
putation, 20(4):606–626.

Yan, H. and Yang, J. (2015). Sparse discriminative feature selection. Pattern Recognition,
48(5):1827–1835.

Zhang, J. and Sanderson, A. C. (2009). JADE: adaptive differential evolution with op-
tional external archive. IEEE Transactions on Evolutionary Computation, 13(5):945–958.

Zhang, M., Ding, C., Zhang, Y., and Nie, F. (2014a). Feature selection at the discrete
limit. In Twenty-Eighth AAAI Conference on Artificial Intelligence.

Zhang, Y., Wang, S., Phillips, P., and Ji, G. (2014b). Binary PSO with mutation operator
for feature selection using decision tree applied to spam detection. Knowledge-Based
Systems, 64:22–31.

Zhao, H., Sinha, A. P., and Ge, W. (2009). Effects of feature construction on classification
performance: An empirical study in bank failure prediction. Expert Systems with
Applications, 36(2):2633–2644.

28 Evolutionary Computation Volume x, Number x

